Matrix Transformations on Cesaro Vector-Valued Sequence Space

Chanan Sudsukh
Department of Mathematics Statistics and Computer Science, Faculty of Liberal Arts and Science, Kasetsart University Kamphaeng Saen Campus, Nakhorn Prathom 73140, Thailand
e-mail: faachs@nontri.ku.ac.th
Praiboon Pantaragphong and Oravan Arunphalungsanti
Department of Mathematics and Computer Science, Faculty of Science, King Mongkut's Institute of Technology Ladgrabang, Bangkok 10520, Thailand
e-mail: orav_ple@yahoo.com
Abstract. The purpose of this paper is to find β-dual of Cesaro vector-valued sequence space and give matrix characterizations from $\operatorname{Ces}(X, p)$ into sequence spaces $\ell(q), \ell_{\infty}(q)$, $M_{\infty}(q)$ and $\ell_{\infty}(q)$ where $p=\left(p_{k}\right)$ is a bounded sequence of positive real numbers such that $p_{k}>1$ for all $k \in N$.

1. Introduction

Let $(X,\|\cdot\|)$ be a Banach space with a scalar field K, the space of all sequences in X is denote by $W(X)$ and let $\Phi(X)$ denote the space of all finite sequences in X. When $X=\mathbb{R}$ or \mathcal{C}, the corresponding spaces are written as W and Φ. Let N be the set of all natural numbers, we write $x=\left(x_{k}\right)$ with $x_{k} \in X$ for all $k \in N$. A sequence space in X is linear subspace of $W(X)$. Let $p=\left(p_{k}\right)$ be a bounded sequence of positive real numbers, the X-valued sequence space $c_{0}(X, p), c(X, p), \ell_{\infty}(X, p), \ell(X, p), C e s(X, p), \underline{\ell_{\infty}}(X, p), E_{r}(X, p)$ and $F_{r}(X, p)$ are define by:

$$
\begin{aligned}
c_{0}(X, p) & =\left\{x=\left(x_{k}\right): \lim _{k \rightarrow \infty}\left\|x_{k}\right\|^{p_{k}}=0\right\}, \\
c(X, p) & =\left\{x=\left(x_{k}\right): \lim _{k \rightarrow \infty}\left\|x_{k}-a\right\|^{p_{k}}=0 \text { for some } a \in X\right\}, \\
\ell_{\infty}(X, p) & =\left\{x=\left(x_{k}\right): \sup _{k}\left\|x_{k}\right\|^{p_{k}}<\infty\right\},
\end{aligned}
$$

Received December 30, 2002, and, in revised form, March 3, 2003.
2000 Mathematics Subject Classification: 46A45.
Key words and phrases: sequence space, matrix transformation and Maddox vectorvalued sequence space.

$$
\begin{aligned}
\ell(X, p) & =\left\{x=\left(x_{k}\right): \sum_{k=1}^{\infty}\left\|x_{k}\right\|^{p_{k}}<\infty\right\} \\
\operatorname{Ces}(X, p) & =\left\{x=\left(x_{k}\right): \sum_{k=1}^{\infty}\left(\frac{1}{k} \sum_{n=1}^{k}\left\|x_{n}\right\|\right)^{p_{k}}<\infty\right\}, \\
\underline{\ell_{\infty}}(X, p) & =\left\{x=\left(x_{k}\right): \lim _{k \rightarrow \infty}\left\|\delta_{k} x_{k}\right\|=0 \quad \text { for each }\left(\delta_{k}\right) \in c_{0}\right\}, \\
E_{r}(X, p) & =\left\{x=\left(x_{k}\right): \sup _{k} k^{-r}\left\|x_{k}\right\|^{p_{k}}<\infty\right\}, \text { and } \\
F_{r}(X, p) & =\left\{x=\left(x_{k}\right): \sum_{k=1}^{\infty} k^{r}\left\|x_{k}\right\|^{p_{k}}<\infty\right\} .
\end{aligned}
$$

When $X=K$, the scalar field of X, the corresponding spaces are written as $c_{0}(p), c(p), \ell_{\infty}(p), \operatorname{Ces}(p), \ell_{\infty}(p), E_{r}(p)$ and $F_{r}(p)$ respectively.

Grosse and Erdmann [2-3] investigated and gave characterization for infinite matrices to transform between sequence spaces of Maddox. In 1993, F. M. Khan and M. A. Khan[4] gave characterization of infinite matrices of Cesàro sequence space $(\operatorname{Ces}(p, s))$ into the space of convergent series (cs) and the space of bounded series (bs). Wu and Liu [9] gave the matrix transformations from X-valued sequence spaces $c_{0}(X, p), \ell_{\infty}(X, p)$ and $\ell(X, p)$ into scalar-valued sequence spaces $c_{0}(q)$ and $\ell_{\infty}(q)$. S. Suantai $[6,7,8]$ gave characterization of infinite matrices mapping Nakano vector-valued sequence space $\ell(X, p)$ into any $B K$-space, ℓ_{∞} and $\ell_{\infty}(q)$. In [1] C. Sudsukh characterized an infinite matrix that transform Maddox vector-valued sequence space into Nakano sequence space and Nakano vector-valued sequence space into Maddox sequence space. In [3] S. Kongnual characterized the matrix transformation of bounded variation vector-valued sequence space into Maddox sequence space.

However, there are many open problems about matrix transformations from vector-valued sequence spaces into scalar-valued sequence spaces. In this paper we study matrix transformations of Cesaro vector-valued sequence space $C e s(X, p)$ into sequence spaces $\ell(q), \ell_{\infty}(q), M_{\infty}(q)$ and $\underline{\ell_{\infty}}(q)$.

2. Definitions and lemmas

For $z \in X$ and $k \in N$, we let $e^{(k)}(z)$ be the sequence $(0,0,0, \ldots, 0, z, 0, \ldots)$ with z in the $k^{t h}$ position. For a fixed scalar sequence $u=\left(u_{k}\right)$ the sequence space E_{u} is defined by

$$
E_{u}=\left\{x=\left(x_{k}\right) \in W(X):\left(u_{k} x_{k}\right) \in E\right\}
$$

Suppose that the X-valued sequence space E is endowed with some linear topology τ. Then E is called a K-space if for each $n \in N$ the $n^{t h}$ coordinate mapping $p_{n}: E \rightarrow X$, defined by $p_{n}(x)=x_{n}$, is continuous on E. If, in addition, (E, τ) is a Fréchet(Banach, LF-, LB-) space, then E is called an $F K-(B K-, L F K-, L B K-)$ space. Now, suppose that E contains $\Phi(X)$. Then E is said to have property AB
if the set $\left\{\Sigma_{k=1}^{n} e^{k}\left(x_{k}\right): n \in N\right\}$ is bounded in E for every $x=\left(x_{k}\right) \in E$. It said to have property AK if $\sum_{k=1}^{n} e^{k}\left(x_{k}\right) \rightarrow x \in E$ as $n \rightarrow \infty$ for every $x=\left(x_{k}\right) \in E$. It has property $\mathbf{A D}$ if $\Phi(X)$ is dense in E. Let $A=\left(f_{k}^{n}\right)$ with f_{k}^{n} in X^{\prime}, the topological dual of X. Suppose that E is a space of X-valued sequences and F a space of scalar-valued sequences. Then A is said to map E into F, written $A: E \rightarrow F$ if for each $x=\left(x_{k}\right) \in E, A_{n}(x)=\sum_{k=1}^{\infty} f_{k}^{n}\left(x_{k}\right)$ converges for each $n \in N$ and if the sequence $A x=\left(A_{n}(x)\right) \in F$. We denote by (E, F) the set of all infinite matrices mapping E into F. If $u=\left(u_{k}\right)$ and $v=\left(v_{k}\right)$ are scalar sequences, let

$$
{ }_{u}(E, F)_{v}=\left\{A=\left(f_{k}^{n}\right):\left(u_{n} v_{k} f_{k}^{n}\right)_{n, k} \in(E, F)\right\}
$$

If $u_{k} \neq 0$ for all $k \in N$, we write $u^{-1}=\left(\frac{1}{u_{k}}\right)$.
In C. Sudsukh [1], this lemma is useful to characterize condition of matrix transformations.

Lemma 2.1. Let $E \subseteq W(X)$ be an $F K$-space with $A K$ property and F an $F K$ space of scalar sequences. Then, for an infinite matrix $A=\left(f_{k}^{n}\right), A: E \rightarrow F$ if and only if
(1) for each $n \in N, \sum_{k=1}^{\infty} f_{k}^{n}\left(x_{k}\right)$ converges for all $x=\left(x_{k}\right) \in E$,
(2) for each $k \in N,\left(f_{k}^{n}(z)\right)_{n=1}^{\infty} \in F$ for all $z \in X$, and
(3) $A: \Phi(X) \rightarrow F$ is continuous when $\Phi(X)$ is considered as a subspace of E.

3. Some auxiliary results

In this part we first give useful results that concern with $\beta-d u a l$ of $\operatorname{Ces}(X, p)$.

Proposition 3.1. Let $\left(f_{k}\right)$ be a sequence of continuous linear functional on X and $p=\left(p_{k}\right)$ of positive real numbers with $p_{k}>1$ and $\frac{1}{p_{k}}+\frac{1}{t_{k}}=1$ for all $k \in N$. Then $\sum_{k=1}^{\infty} f_{k}\left(x_{k}\right)$ converges for all $x=\left(x_{k}\right) \in C e s(X, p)$ if and only if $\sum_{k=1}^{\infty}\left(\sup _{n}\left\|f_{n}\right\| . k\right)^{t_{k}} B^{-t_{k}}<\infty$ for some $B \in N$.
Proof. Suppose that $\sum_{k=1}^{\infty}\left(\sup _{n}\left\|f_{n}\right\| \cdot k\right)^{t_{k}} B^{-t_{k}}<\infty$ for some $B \in N$ then for each $x=\left(x_{k}\right) \in \operatorname{Ces}(X, p)$

$$
\begin{aligned}
& \sum_{k=1}^{\infty}\left|f_{k}\left(x_{k}\right)\right| \leq \sum_{k=1}^{\infty}\left\|f_{k}\right\| \cdot k \cdot B^{-1} B \cdot \frac{1}{k}\left\|x_{k}\right\| \\
\leq & \sum_{k=1}^{\infty}\left[\left(\left\|f_{k}\right\| \cdot k\right)^{t_{k}} B^{-t_{k}}+B^{p_{k}}\left(\frac{1}{k}\left\|x_{k}\right\|\right)^{p_{k}}\right] \\
\leq & \sum_{k=1}^{\infty}\left[\left(\sup _{k}\left\|f_{k}\right\| \cdot k\right)^{t_{k}} B^{-t_{k}}+B^{p_{k}}\left(\frac{1}{k}\left\|x_{k}\right\|\right)^{p_{k}}\right] \\
= & \sum_{k=1}^{\infty}\left(\sup _{n}\left\|f_{n}\right\| \cdot k\right)^{t_{k}} B^{-t_{k}}+\sum_{k=1}^{\infty} B^{p_{k}}\left(\frac{1}{k}\left\|x_{k}\right\|\right)^{p_{k}}
\end{aligned}
$$

$$
\begin{aligned}
& \leq \sum_{k=1}^{\infty}\left(\sup _{n}\left\|f_{n}\right\| \cdot k\right)^{t_{k}} B^{-t_{k}}+B^{\sup _{k} p_{k}} \sum_{k=1}^{\infty}\left(\frac{1}{k}\left\|x_{k}\right\|\right)^{p_{k}} \\
& \leq \sum_{k=1}^{\infty}\left(\sup _{n}\left\|f_{n}\right\| \cdot k\right)^{t_{k}} B^{-t_{k}}+B^{G} \sum_{k=1}^{\infty}\left(\frac{1}{k} \sum_{k=1}^{k}\left\|x_{k}\right\|\right)^{p_{k}} \\
& <\infty
\end{aligned}
$$

Thus $\sum_{k=1}^{\infty} f_{k}\left(x_{k}\right)$ converges.
Assume that $\sum_{k=1}^{\infty} f_{k}\left(x_{k}\right)$ converges for each $x=\left(x_{k}\right) \in \operatorname{Ces}(X, p)$. Choose scalar sequence $\left(t_{k}\right)$ with $\left|t_{k}\right|=1$ such that $f_{k}\left(t_{k} x_{k}\right)=\left|f_{k}\left(x_{k}\right)\right|, \forall k \in N$. Since $\left(t_{k} x_{k}\right) \in C e s(X, p)$ by assumption we have $\sum_{k=1}^{\infty} f_{k}\left(t_{k} x_{k}\right)$ converges then

$$
\begin{equation*}
\sum_{k=1}^{\infty}\left|f_{k}\left(x_{k}\right)\right|<\infty \quad \text { for all } \quad x=\left(x_{k}\right) \in \operatorname{Ces}(X, p) \tag{3.1}
\end{equation*}
$$

We want to show that $\exists B \in N$ such that $\sum_{k=1}^{\infty}\left(\sup _{n}\left\|f_{n}\right\| . k\right)^{t_{k}} B^{-t_{k}}<\infty$. On contrary, suppose that

$$
\begin{equation*}
\sum_{k=1}^{\infty}\left(\sup _{n}\left\|f_{n}\right\| \cdot k\right)^{t_{k}} b^{-t_{k}}=\infty, \quad \forall b \in N . \tag{3.2}
\end{equation*}
$$

By (3.2) implies that for each $k_{0} \in N$

$$
\begin{equation*}
\sum_{k>k_{0}}\left(\sup _{n}\left\|f_{n}\right\| \cdot k\right)^{t_{k}} b_{1}^{-t_{k}}=\infty, \quad \forall b_{1} \in N \tag{3.3}
\end{equation*}
$$

From (3.3) we can choose $b_{2}>b_{1}$ and $b_{2}>2^{2}$ and $k_{2}>k_{1}$ such that

$$
\begin{equation*}
\sum_{k_{1}<k \leq k_{2}}\left(\sup _{n}\left\|f_{n}\right\| \cdot k\right)^{t_{k}} b_{2}^{-t_{k}}>k^{2} \tag{3.4}
\end{equation*}
$$

Doing in this way go on, we have sequence $1=k_{0}<k_{1}<k_{2}<\ldots$ and $b_{1}<b_{2}<$ $, \ldots, b_{i}>2^{i}$ such that

$$
\sum_{k_{i-1}<k \leq k_{i}}\left(\sup _{n}\left\|f_{n}\right\| \cdot k\right)^{t_{k}} b_{i}^{-t_{k}}>k^{2}
$$

Choose x_{k} in X with $\left\|x_{k}\right\|=1$ such that $\sum_{k_{i-1}<k \leq k_{i}}\left(\sup _{n}\left|f_{n}\left(x_{n}\right)\right| \cdot k\right)^{t_{k}} b_{i}{ }^{-t_{k}}$ $>k^{2}, \forall i \in N$. Let $a_{i}=\sum_{k_{i-1}<k \leq k_{i}}\left(\sup _{n}\left|f_{n}\left(x_{n}\right)\right| \cdot k\right)^{t_{k}} b_{i}^{-t_{k}}$ and $y=\left(y_{k}\right)$, $y_{k}=a_{i}^{-1}\left(\sup _{n}\left|f_{n}\left(x_{n}\right)\right| \cdot k\right)^{t_{k}}\left|f_{k}\left(x_{k}\right)\right|^{-1} x_{k}$. Then $y \in \operatorname{Ces}(X, p)$. Let $\alpha=$ $\left(\sup _{n}\left|f_{n}\left(x_{n}\right)\right|\right)$ and $G=\sup _{k} p_{k}$, we can separate two cases.

Case $\alpha<1$;

$$
\begin{aligned}
& {\left[\sum_{k_{i-1}<k \leq k_{i}}\left(\frac{1}{k} \sum_{j=1}^{k}\left\|y_{j}\right\|\right)^{p_{k}}\right]^{\frac{1}{G}}=\left[\sum_{k_{i-1}<k \leq k_{i}} \frac{1}{k^{p_{k}}}\left(\sum_{j=1}^{k}\left\|a_{i}^{-1} \alpha^{t_{j}} j^{t_{j}}\left|f_{j}\left(x_{j}\right)\right|^{-1} \cdot x_{j}\right\|\right)^{p_{k}}\right]^{\frac{1}{G}} } \\
= & {\left[\sum_{k_{i-1}<k \leq k_{i}} \frac{1}{k^{p_{k}}}\left(\sum_{j=1}^{k} a_{i}^{-1} \alpha^{t_{j}} j^{t_{j}}\left|f_{j}\left(x_{j}\right)\right|^{-1}\right)^{p_{k}}\right]^{\frac{1}{G}} \quad ;\left\|x_{j}\right\|=1 } \\
\leq & {\left[\sum_{k_{i-1}<k \leq k_{i}} \frac{1}{k^{p_{k}}}\left(\sum_{j=1}^{k} a_{i}^{-1} 1 . j^{t_{j}}\left|f_{j}\left(x_{j}\right)\right|^{-1}\right)^{p_{k}}\right]^{\frac{1}{G}} \quad ; \alpha^{t_{j}} \leq \alpha<1, t_{j}>1 } \\
\leq & {\left[\sum_{k_{i-1}<k \leq k_{i}} \frac{1}{k^{p_{k}}}\left(\sum_{j=1}^{k} a_{i}^{-1} 1 . k^{\sup _{k} t_{k}}\left|f_{j}\left(x_{j}\right)\right|^{-1}\right)^{p_{k}}\right]^{\frac{1}{G}} ; j^{t_{j}} \leq k^{t_{j}} \leq k^{\sup _{k} t_{k}}, \forall k \in N . }
\end{aligned}
$$

Let $K_{1, k}$ and $K_{2, k}$ are partitions of $\{1,2, \ldots, k\}$, if $j \in K_{1, k}$ then $\left|f_{j}\left(x_{j}\right)\right|<1$ and if $j \in K_{2, k}$ then $\left|f_{j}\left(x_{j}\right)\right| \geq 1$ for all $j=1,2, \ldots, k$. So we have

$$
\begin{aligned}
& =\left[\sum_{k_{i-1}<k \leq k_{i}} \frac{1}{k^{p_{k}}}\left(\sum_{j \in K_{1, k}} a_{i}^{-1} k^{L}\left|f_{j}\left(x_{j}\right)\right|^{-1}+\sum_{j \in K_{2, k}} a_{i}^{-1} k^{L}\left|f_{j}\left(x_{j}\right)\right|^{-1}\right)^{p_{k}}\right]^{\frac{1}{G}} ; L=\sup _{k} t_{k} \\
& \leq\left[\sum_{k_{i-1}<k \leq k_{i}} \frac{1}{k^{p_{k}}}\left(\sum_{j \in K_{1, k}} a_{i}^{-1} k^{L}\left|f_{j}\left(x_{j}\right)\right|^{-1}\right)^{p_{k}}\right]^{\frac{1}{G}} \\
& +\left[\sum_{k_{i-1}<k \leq k_{i}} \frac{1}{k^{p_{k}}}\left(\sum_{j \in K_{2, k}} a_{i}^{-1} k^{L}\left|f_{j}\left(x_{j}\right)\right|^{-1}\right)^{p_{k}}\right]^{\frac{1}{G}} \\
& \leq\left[\sum_{k_{i-1}<k \leq k_{i}} \frac{1}{k^{p_{k}}}\left(\sum_{j \in K_{1, k}} a_{i}^{-1} k^{L} C\right)^{p_{k}}\right]^{\frac{1}{G}}+\left[\sum_{k_{i-1}<k \leq k_{i}} \frac{1}{k^{p_{k}}}\left(\sum_{j \in K_{2, k}} a_{i}^{-1} k^{L}\left|f_{j}\left(x_{j}\right)\right|^{-1}\right)^{p_{k}}\right]^{\frac{1}{G}} \\
& ;\left|f_{j}\left(x_{j}\right)\right|^{-1} \leq \max _{j}\left|f_{j}\left(x_{j}\right)\right|^{-1}=C \text {, where } C>1 \\
& \leq\left[\sum_{k_{i-1}<k \leq k_{i}} \frac{1}{k^{p_{k}}}\left(\sum_{j \in K_{1, k}} a_{i}^{-1} k^{L} C\right)^{p_{k}}\right]^{\frac{1}{G}}+\left[\sum_{k_{i-1}<k \leq k_{i}} \frac{1}{k^{p_{k}}}\left(\sum_{j \in K_{2, k}} a_{i}^{-1} k^{L} .1\right)^{p_{k}}\right]^{\frac{1}{G}} \\
& ;\left|f_{j}\left(x_{j}\right)\right|^{-1} \leq 1 \\
& \leq\left[\sum_{k_{i-1}<k \leq k_{i}} \frac{1}{k^{p_{k}}}\left(\sum_{j=1}^{k} a_{i}^{-1} k^{L} C\right)^{p_{k}}\right]^{\frac{1}{G}}+\left[\sum_{k_{i-1}<k \leq k_{i}} \frac{1}{k^{p_{k}}}\left(\sum_{j=1}^{k} a_{i}^{-1} k^{L} .1\right)^{p_{k}}\right]^{\frac{1}{G}} \\
& ; \sum_{j \in K_{1, k}}+\sum_{j \in K_{2, k}} \leq \sum_{j=1}^{k}+\sum_{j=1}^{k} \\
& \leq\left[C^{G} k_{i}^{L . G} \sum_{k_{i-1}<k \leq k_{i}} a_{i}^{-1}\right]^{\frac{1}{G}}+\left[k_{i}^{L . G} \sum_{k_{i-1}<k \leq k_{i}} a_{i}^{-1}\right]^{\frac{1}{G}} \quad ; k^{L . G} \leq k_{i}^{L . G} \\
& <\left[C^{G} k_{i}^{L . G} \sum_{k_{i-1}<k \leq k_{i}} \frac{1}{k^{2}}\right]^{\frac{1}{G}}+\left[k_{i}^{L . G} \sum_{k_{i-1}<k \leq k_{i}} \frac{1}{k^{2}}\right]^{\frac{1}{G}} \quad ; a_{i}>k^{2} \Rightarrow a_{i}^{-1}<k^{-2}
\end{aligned}
$$

$$
\begin{aligned}
& =\left(C^{G} k_{i}^{L \cdot G}\right)^{\frac{1}{G}}\left(\sum_{k_{i-1}<k \leq k_{i}} \frac{1}{k^{2}}\right)^{\frac{1}{G}}+\left(k_{i}^{L \cdot G}\right)^{\frac{1}{G}}\left(\sum_{k_{i-1}<k \leq k_{i}} \frac{1}{k^{2}}\right)^{\frac{1}{G}} \\
& =\left[\left(C \cdot k_{i}^{L}\right)+k_{i}^{L}\right]\left(\sum_{k_{i-1}<k \leq k_{i}} \frac{1}{k^{2}}\right)^{\frac{1}{G}} \\
& =\left[k_{i}^{L}(C+1)\right]\left(\sum_{k_{i-1}<k \leq k_{i}} \frac{1}{k^{2}}\right)^{\frac{1}{G}} .
\end{aligned}
$$

Hence, $\left[\sum_{k_{i-1}<k \leq k_{i}}\left(\frac{1}{k} \sum_{j=1}^{k}\left\|y_{j}\right\|\right)^{p_{k}}\right]^{\frac{1}{G}} \leq T_{i, 1}\left(\sum_{k_{i-1}<k \leq k_{i}} \frac{1}{k^{2}}\right)^{\frac{1}{G}}$ then $\sum_{k_{i-1}<k \leq k_{i}}\left(\frac{1}{k} \sum_{j=1}^{k}\left\|y_{j}\right\|\right)^{p_{k}} \leq T_{i, 1}^{G} \sum_{k_{i-1}<k \leq k_{i}} \frac{1}{k^{2}}$. Therefore, $\sum_{k=1}^{\infty}\left(\frac{1}{k} \sum_{j=1}^{k}\left\|y_{j}\right\|\right)^{p_{k}} \leq T_{i, 1}^{G} \sum_{k=1}^{\infty} \frac{1}{k^{2}}<\infty$, where $T_{i, 1}=\left[k_{i}^{L}(C+1)\right]$.

Case $\alpha \geq 1$;

$$
\begin{aligned}
& {\left[\sum_{k_{i-1}<k \leq k_{i}}\left(\frac{1}{k} \sum_{j=1}^{k}\left\|y_{j}\right\|\right)^{p_{k}}\right]^{\frac{1}{G}} } \\
= & {\left[\sum_{k_{i-1}<k \leq k_{i}} \frac{1}{k^{p_{k}}}\left(\sum_{j=1}^{k}\left\|a_{i}^{-1} \alpha^{t_{j}} j^{t_{j}}\left|f_{j}\left(x_{j}\right)\right|^{-1} \cdot x_{j}\right\|\right)^{p_{k}}\right]^{\frac{1}{G}} } \\
= & {\left[\sum_{k_{i-1}<k \leq k_{i}} \frac{1}{k^{p_{k}}}\left(\sum_{j=1}^{k} a_{i}^{-1} \alpha^{t_{j}} j^{t_{j}}\left|f_{j}\left(x_{j}\right)\right|^{-1}\right)^{p_{k}}\right]^{\frac{1}{G}} \quad ;\left\|x_{j}\right\|=1 } \\
\leq & {\left[\sum_{k_{i-1}<k \leq k_{i}} \frac{1}{k^{p_{k}}}\left(\sum_{j=1}^{k} a_{i}^{-1} \alpha^{\sup _{k} t_{k}} \cdot j^{t_{j}}\left|f_{j}\left(x_{j}\right)\right|^{-1}\right)^{p_{k}}\right]^{\frac{1}{G}} \quad ; \alpha^{t_{j}} \leq \alpha^{\sup _{k} t_{k}}, \alpha \geq 1 } \\
\leq & {\left[\sum_{k_{i-1}<k \leq k_{i}} \frac{1}{k^{p_{k}}}\left(\sum_{j=1}^{k} a_{i}^{-1} \alpha^{\sup _{k} t_{k}} \cdot k^{\sup _{k} t_{k}}\left|f_{j}\left(x_{j}\right)\right|^{-1}\right)^{p_{k}}\right]^{\frac{1}{G}} \quad ; j^{t_{j}} \leq k^{t_{j}} \leq k^{\sup _{k} t_{k}} . }
\end{aligned}
$$

Now doing same as case $\alpha<1$, which separate by partition. We have

$$
\begin{aligned}
= & {\left[\sum _ { k _ { i - 1 } < k \leq k _ { i } } \frac { 1 } { k ^ { p _ { k } } } \left(\sum_{j \in K_{1, k}} a_{i}^{-1} \alpha^{\text {sup }_{k} t_{k}} k^{\sup _{k} t_{k}}\left|f_{j}\left(x_{j}\right)\right|^{-1}\right.\right.} \\
& \left.\left.\quad+\sum_{j \in K_{2, k}} a_{i}^{-1} \alpha^{\sup _{k} t_{k}} k^{\sup _{k} t_{k}}\left|f_{j}\left(x_{j}\right)\right|^{-1}\right)^{p_{k}}\right]^{\frac{1}{G}} \\
\leq & {\left.\left[C^{G}\left(\alpha \cdot k_{i}\right)^{L . G} \sum_{k_{i-1}<k \leq k_{i}} a_{i}^{-1}\right]^{\frac{1}{G}}+\left[\left(\alpha \cdot k_{i}\right)^{L \cdot G} \sum_{k_{i-1}<k \leq k_{i}} a_{i}\right]^{-1}\right]^{\frac{1}{G}} ; k \leq k_{i} } \\
< & {\left[C^{G}\left(\alpha \cdot k_{i}\right)^{L \cdot G} \sum_{k_{i-1}<k \leq k_{i}} k^{-2}\right]^{\frac{1}{G}}+\left[\left(\alpha \cdot k_{i}\right)^{L \cdot G} \sum_{k_{i-1}<k \leq k_{i}} k^{-2}\right]^{\frac{1}{G}} } \\
& ; a_{i}>k^{2} \Rightarrow a_{i}^{-1}<k^{-2} \\
= & {\left[\left(\alpha \cdot k_{i}\right)^{L}(C+1)\right]\left(\sum_{k_{i-1}<k \leq k_{i}} k^{-2}\right)^{\frac{1}{G}} }
\end{aligned}
$$

Thus, $\left[\sum_{k_{i-1}<k \leq k_{i}}\left(\frac{1}{k} \sum_{j=1}^{k}\left\|y_{j}\right\|\right)^{p_{k}}\right]^{\frac{1}{G}} \leq T_{i, 2}\left(\sum_{k_{i-1}<k \leq k_{i}} \frac{1}{k^{2}}\right)^{\frac{1}{G}}$ then $\sum_{k_{i-1}<k \leq k_{i}}\left(\frac{1}{k} \sum_{j=1}^{k}\left\|y_{j}\right\|\right)^{p_{k}} \leq T_{i, 2}^{G} \sum_{k_{i-1}<k \leq k_{i}} \frac{1}{k^{2}}$. Therefore, $\sum_{k=1}^{\infty}\left(\frac{1}{k} \sum_{j=1}^{k}\left\|y_{j}\right\|\right)^{p_{k}} \leq T_{i, 2}^{G} \sum_{k=1}^{\infty} \frac{1}{k^{2}}<\infty$, where $T_{i, 2}=\left[\left(\alpha \cdot k_{i}\right)^{L}(C+1)\right]$. We obtained $y \in \operatorname{Ces}(X, p)$.
For each $i \in N$, we have

$$
\begin{aligned}
\sum_{k_{i-1}<k \leq k_{i}}\left|f_{k}\left(y_{k}\right)\right| & =\sum_{k_{i-1}<k \leq k_{i}}\left|f_{k}\left(a_{i}^{-1}\left(\sup _{n}\left|f_{n}\left(x_{n}\right) \cdot k\right|\right)^{t_{k}} \cdot\left|f_{k}\left(x_{k}\right)\right|^{-1} x_{k}\right)\right| \\
& =a_{i}^{-1} \sum_{k_{i-1}<k \leq k_{i}}\left(\sup _{n}\left|f_{n}\left(x_{n}\right) \cdot k\right|\right)^{t_{k}} \cdot b_{i}^{-t_{k}} \cdot b_{i}^{t_{k}} \quad ; b_{i}^{-t_{k}} \cdot b_{i}^{t_{k}}=1 \\
& \geq a_{i}^{-1} \sum_{k_{i-1}<k \leq k_{i}}\left(\sup _{n}\left|f_{n}\left(x_{n}\right) \cdot k\right|\right)^{t_{k}} \cdot b_{i}^{-t_{k}} \quad ; b_{i}^{t_{k}} \geq 1, b_{i}>2^{i} \\
& =1 .
\end{aligned}
$$

Then, $\sum_{k=1}^{\infty}\left|f_{k}\left(y_{k}\right)\right|=\infty$ which is contradiction. The proof is complete.
Remark 3.2. For each $T_{i, 1}$ and $T_{i, 2}$ in Proposition 3.1 that are bounded.

$$
\begin{aligned}
T_{i, 1} & =\left[k_{i}^{L}(C+1)\right]=\left[k_{i}^{\sup _{k} t_{k}}\left(\max _{j}\left|f_{j}\left(x_{j}\right)\right|^{-1}+1\right)\right] \\
T_{i, 2} & =\left[\left(\alpha \cdot k_{i}\right)^{L}(C+1)\right]=\left[\left(\sup _{n}\left|f_{n}\left(x_{n}\right)\right|\right)^{\sup _{k} t_{k}} k_{i}^{\sup _{k} t_{k}}\left(\max _{j}\left|f_{j}\left(x_{j}\right)\right|^{-1}+1\right)\right] .
\end{aligned}
$$

Proof. Since $\left(f_{k}\right)$ be a sequence of continuous linear functional and in the proof we choose sequence x_{k} in X with $\left\|x_{k}\right\|=1$, so $\left|f_{k}\left(x_{k}\right)\right| \leq\left\|f_{k}\right\| \cdot\left\|x_{k}\right\|=\left\|f_{k}\right\| \cdot 1<\infty$. We have $\left|f_{k}\left(x_{k}\right)\right|$ bounded, thus $\max _{j}\left|f_{j}\left(x_{j}\right)\right|^{-1}$ and $\left(\sup _{n}\left|f_{n}\left(x_{n}\right)\right|\right)$ are bounded for all $j=1,2, \ldots k$. Therefore, $T_{i, 1}$ and $T_{i, 2}$ are bounded for all $i \in N$.

4. Main results

In this section, we characterize matrix transformations from $\operatorname{Ces}(X, p)$ into Maddox sequence spaces $\ell(q)$ and $\ell_{\infty}(q)$. By using Lemma 2.1 and Proposition 3.1, we have following theorems.

Theorem 4.1. Let $p=\left(p_{k}\right)$ and $q=\left(q_{k}\right)$ be bounded sequences of positive real numbers such that $p_{k}>1$ and $\frac{1}{p_{k}}+\frac{1}{t_{k}}=1$ for all $k \in N$, and $A=\left(f_{k}^{n}\right)$ an infinite matrix. Then $A: \operatorname{Ces}(X, p) \rightarrow \ell(q)$ if and only if
(1) for each $n \in N$ there exists $B_{n} \in N$ such that

$$
\sum_{k=1}^{\infty}\left(\sup _{j}\left\|f_{j}^{n}\right\| \cdot k\right)^{t_{k}} B_{n}^{-t_{k}}<\infty
$$

(2) for each $k \in N, \sum_{n=1}^{\infty}\left|f_{k}^{n}(x)\right|^{q_{n}}<\infty$ for every $x \in X$ and
(3) for each $r \in N$ there exists $B_{r} \in N$ such that

$$
\sum_{k \in K}\left(\frac{1}{k} \sum_{j=1}^{k}\left\|x_{j}\right\|\right)^{p_{k}}<\frac{1}{B_{r}} \Rightarrow \sum_{n=1}^{\infty}\left|\sum_{k \in K} f_{k}^{n}\left(x_{k}\right)\right|^{q_{n}}<\frac{1}{r}
$$

for all $x=\left(x_{k}\right) \in \Phi(X)$ and all finite subsets K of N.
Theorem 4.2. Let $p=\left(p_{k}\right)$ and $q=\left(q_{k}\right)$ be bounded sequences of positive real numbers with $p_{k}>1$ and $\frac{1}{p_{k}}+\frac{1}{t_{k}}=1$ for all $k \in N$ and $A=\left(f_{k}^{n}\right)$ an infinite matrix. Then $A: \operatorname{Ces}(X, p) \xrightarrow{\infty} \ell_{\infty}(q)$ if and only if there exists $B \in N$ such that

$$
\sup _{n}\left(\sum_{k=1}^{\infty}\left(\sup _{j}\left\|f_{j}^{n}\right\| \cdot k\right)^{t_{k}} B^{-t_{k}}\right)^{q_{n}}<\infty
$$

Proof. By Proposition 3.1, we have $\sum_{k=1}^{\infty}\left(\sup _{j}\left\|f_{j}\right\| \cdot k\right)^{t_{k}} B^{-t_{k}}<\infty$ for all $x=$ $\left(x_{k}\right) \in \operatorname{Ces}(X, p)$. Since $A=\left(f_{k}^{n}\right): \operatorname{Ces}(X, p) \rightarrow \ell_{\infty}(q)$ and definition of $\ell_{\infty}(q)$, we have that $\sup _{n}\left(\sum_{k=1}^{\infty}\left(\sup _{j}\left\|f_{j}^{n}\right\| \cdot k\right)^{t_{k}} B^{-t_{k}}\right)^{q_{n}}<\infty$.
Theorem 4.3. Let $p=\left(p_{k}\right)$ and $q=\left(q_{k}\right)$ be bounded sequences of positive real numbers such that $p_{k}>1$ and $\frac{1}{p_{k}}+\frac{1}{t_{k}}=1$ for all $k \in N$, and $A=\left(f_{k}^{n}\right)$ an infinite matrix. Then $A: \operatorname{Ces}(X, p) \rightarrow M_{\infty}(q)$ if and only if
(1) for each $m, n \in N$ there exists $B \in N$ such that

$$
\sum_{k=1}^{\infty} m^{\frac{t_{k}}{q_{n}}}\left(\sup _{j}\left\|f_{j}^{n}\right\|\right)^{t_{k}} \cdot k^{t_{k}} B^{-t_{k}}<\infty
$$

(2) for all $m, k \in N, \quad \sum_{n=1}^{\infty} m^{\frac{1}{q_{n}}}\left|f_{k}^{n}(x)\right|<\infty$ for every $x \in X$ and
(3) for each $m, r \in N$ there exists $S \in N$ such that

$$
\sum_{k \in K}\left(\frac{1}{k} \sum_{j=1}^{k}\left\|x_{j}\right\|\right)^{p_{k}}<\frac{1}{S} \quad \Rightarrow \quad \sum_{n=1}^{\infty} m^{\frac{1}{q_{n}}}\left|\sum_{k \in K} f_{k}^{n}\left(x_{k}\right)\right|<\frac{1}{r}
$$

for all $x=\left(x_{k}\right) \in \Phi(X)$ and all finite subsets K of N.
Proof. By [1, Proposition 2.3(vii)], we have $M_{\infty}(q)=\bigcap_{m=1}^{\infty} \ell_{\left(m^{\frac{1}{q_{n}}}\right)}$. By [1, Proposition 2.2(ii) and (iv)] and Theorem 4.1, we have

$$
\begin{aligned}
A: \operatorname{Ces}(X, p) \rightarrow M_{\infty}(q) & \Leftrightarrow A: \operatorname{Ces}(X, p) \rightarrow \bigcap_{m=1}^{\infty} \ell_{\left(m^{\frac{1}{q_{n}}}\right)} \\
& \Leftrightarrow A: \operatorname{Ces}(X, p) \rightarrow \ell_{\left(m^{\frac{1}{q_{n}}}\right)}, \text { for all } m \in N \\
& \Leftrightarrow\left(m^{\frac{1}{q_{n}}} f_{k}^{n}\right)_{n, k}: \operatorname{Ces}(X, p) \rightarrow \ell, \text { for all } m \in N \\
& \Leftrightarrow \text { the conditions }(1),(2) \text { and (3) hold. }
\end{aligned}
$$

Theorem 4.4. Let $p=\left(p_{k}\right)$ and $q=\left(q_{k}\right)$ be bounded sequences of positive real numbers such that $p_{k}>1$ and $\frac{1}{p_{k}}+\frac{1}{t_{k}}=1$ for all $k \in N$, and $A=\left(f_{k}^{n}\right)$ an infinite matrix. Then $A: \operatorname{Ces}(X, p) \rightarrow \underline{\ell_{\infty}}(q)$ if and only if for each $m \in N$ there exists $B_{m} \in N$ such that

$$
\sup _{n}\left(\sum_{k=1}^{\infty} s^{\frac{t_{k}}{q_{n}}}\left(\sup _{j}\left\|f_{j}^{n}\right\|\right)^{t_{k}} \cdot k^{t_{k}} B_{m}^{-t_{k}}\right)<\infty
$$

Proof. By [1, Proposition 2.3(vi)], we have $\underline{\ell_{\infty}}(q)=\bigcap_{s=1}^{\infty} \ell_{(s)}^{\left.\frac{1}{q_{n}}\right)}$ and [1, Proposition 2.2(ii) and (iv)], we have

$$
\begin{aligned}
A: \operatorname{Ces}(X, p) \rightarrow \underline{\ell_{\infty}}(q) & \Leftrightarrow A: \operatorname{Ces}(X, p) \rightarrow \bigcap_{s=1}^{\infty} \ell_{\infty}{ }_{\left(\frac{1}{q_{n}}\right)} \\
& \Leftrightarrow A: \operatorname{Ces}(X, p) \rightarrow \ell_{(s)}, \text { for all } s \in N \\
& \Leftrightarrow\left(s^{\frac{1}{q_{n}}} f_{k}^{n}\right)_{n, k}: \operatorname{Ces}(X, p) \rightarrow \ell_{\infty}, \text { for all } s \in N \\
& \Leftrightarrow \text { the condition holds. }
\end{aligned}
$$

Acknowledgement. The author would like to thank to my advisor, co-advisor and friend for guidance to do this paper.

References

[1] Sudsukh, C., Matrix Transformations of Vector-Valued Sequence Spaces, Ph. D. thesis of Chaingmai University, (2000).
[2] Grosse, K. and Erdmann. G., The structure of Sequence Spaces of Maddox, Canad. J. Math., 44(1992), 47-54.
[3] Grosse, K. and Erdmann. G., Matrix Transformations between the Sequence Spaces of Maddox, J. of Math. Anal. Appl., 180(1993), 223-238.
[4] Khan, F. M. and Khan, M. A., Matrix Transformations between Cesaro Sequence Spaces, Indian J. Pure Appl. Math., 25(6)(1994), 641-645.
[5] Kongnual, S., Matrix Transformations of Bounded Variation Vector-Valued Sequence Space into Maddox Sequence Space, Master degree Thesis of King Mongkut's Institute of Technology Ladkrabang, (2001).
[6] Suantai, S., Matrix Transformations between some Vector-Valued Sequence Spaces, Seam., 24(2)(2000).
[7] Suantai, S. and Sudsukh, C., Matrix Transformations of Nakano Vector-Valued Sequence Spaces, Kyungpook Mathematical Journal, 40(1)(2000), 93-97.
[8] Suantai, S., Matrix Transformations from Nakano Vector-Valued Sequence Space into the Orlicz Sequence Space, to appear in the proceeding of functions, Adam Michiscwitz University. Poznan, Poland, (1998).
[9] Wu, C. X. and Lui, L., Matrix Transformations between some Vector-Valued Sequence Spaces, SEA bull, 17(1)(1993), 83-96.

