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ABSTRACT. The purpose of this paper, we give matrix characterizations from Cesaro
vector-valued sequence space Ces(X, p) into Orlicz sequence space £ys and by using this
result we obtain matrix characterizations from Ces(X,p) into has and £, where p = (pi)

is a bounded sequence of positive real numbers such that py > 1 for all K € N.

1. Introduction

Let (X,]|.||) be a Banach space with a scalar field K, the space of all se-
quences in X is denote by W(X) and let ®(X) denote the space of all finite
sequences in X. When X = R or C, the corresponding spaces are written as
W and ®. Let N be the set of all natural numbers, we write x = (xy,) with
x € X forall k € N. A sequence space in X is linear subspace of W (X). Let
p = (px) be a bounded sequence of positive real numbers, the X-valued se-
quence space co(X, p), (X, p), loo (X, p), {(X,p), Ces(X,p), ls (X, p), Er-(X, p)
and F,.(X,p) are define by:

(X.p) = {o = (@) : lim [l = 0},
c(X,p) = {z = (zp) : klim |z — a||P* = 0 for some a € X},
loo(X,p) = {@ = (@) : sup [ < oo},

UX,p) = {x = () : ) ]| < oo},
k=1

Ces(X,p) ={z = (zx) : Z(

k=1 n=1

k
lzn][)P < oo},

T =

1
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lo(X,p) = {x = (ap) : kllrrolo |0kxk]| =0 for each(dy) € co},

Er(X,p) = {z = (ax) : sup k™" [l < o0}, and
k

F(X,p) = {o = (a4) : 3K ol < o).
k=1

When X = K, the scalar field of X, the corresponding spaces are written
as co(p), c(p), £ (p), Ces(p), Eﬁ(p)v E,(p) and F,(p) respectively.

Grosse and Erdmann [2, 3] investigated and gave characterization for
infinite matrices to transform between sequence spaces of Maddox. In 1993,
F. M. Khan and M. A. Khan[4] gave characterization of infinite matrices of
Cesaro sequence space (Ces(p,s)) into the space of convergent series (cs)
and the space of bounded series (bs). S. Suantai[6, 7] gave characterization
of infinite matrices mapping Nakano vector-valued sequence space (X, p)
into any BK-space, { and £o(q). S. Suantai[9, 11] has given matrix charac-
terizations from £ (X, p), co(X) and ¢(X, p) into the Orlicz sequence space.

In this paper, we interested to find characterizations from Ces(X, p) into
Orlicz sequence space.

2. Notation and Definitions

For z € X and k € N, we let e(k)(z) be the sequence (0, 0,0, ...,0, 2,0, ...)
with z in the k™ position. For a fixed scalar sequence u = (uy,) the sequence
space F, is defined by

E, ={x = (z;) € W(X) : (upxy) € E}.

Suppose that the X-valued sequence space FE is endowed with some linear
topology 7. Then F is called a K-space if for each n € N the n'* coordinate
mapping p, : E — X, defined by p,(x) = z,, is continuous on E. If, in
addition, (E,7) is a Fréchet(Banach, LF-, LB-) space, then E is called an
FK — (BK—,LFK—,LBK—) space. Now, suppose that E contains ®(X).
Then E is said to have property AB if the set {X7_ e*(zx) : n € N}
is bounded in FE for every = = (z) € E. It said to have property AK
if X1 eF(xg) — x € E as n — oo for every * = (z) € E. It has
property AD if ®(X) is dense in E. Let A = (f}') with f in X', the
topological dual of X. Suppose that E is a space of X-valued sequences and
F' a space of scalar-valued sequences. Then A is said to map F into F,
written A : B — F if for each x = (v,) € E, An(v) = X2, f! (x1) converges
for each n € N and if the sequence Ax = (A, (z)) € F. We denote by (F, F)



the set of all infinite matrices mapping E into F. If u = (uy) and v = (vg)
are scalar sequences, let

u(E, F)y = {A= () : (unvrfi)nx € (B, F)}.

If up # 0 for all k € N, we write u™" = (i)

A function M : R — [0, 00) is said to be an Orlicz function if it is even,
convex, continuous and vanishing only at 0. We define the Orlicz sequence
space by the formula

Oy = {x = (21) € £°: ppr(cx) :ZMcxk < oo for some ¢ > 0}
k=1

where 9 stands for the space of all real sequences. We consider £/
equipped with the Luxemburg norm

o]l = inf{e > 0 par(5) < 1},

Let hps denote the subspace order continuous elements, i.e

har = {x = (z1) : pp(cx) < oo forany c>0}.

It is know that ¢j; is a BK-space and hj; is a closed subspace of £;.
We say that an Orlicz function M satisfiesthe dy condition (M € 62
for short) if there exist constants k > 2 and ug > 0 such that

M(2u) < KM (u)

whenever |u| < ug.
In C. Sudsukh [8], this Proposition is useful to characterize condition of
matrix transformations.

Proposition 2.1. Let E and E,(n € N) be X -valued sequence spaces, and
F and F,,(n € N) scalar sequence space, and let u and v be sequences of real
numbers with uy # 0 for all k € N. Then we have

(1) (UnZ Bn, F) = (o1 (Bn, F),
(i) (B, My Fn) = Moz (B, Fo),
(iil) (Bu, o) =v (B, F) )y,

) (

(iv

E1+E27 ) (E17F)H(E2)F)v



(v) (E,F1) = (E,Fo) N (®(X), F1) if E an FK-space with AD, F» is an
FK-space and Fi is a closed subspace of Fo.

Proposition 2.2. Let M be Orlicz function and x € £yy.
(1) If =l <1, then pa(z) < [|z]].
i) If 2l > 1, then par() > [z

(iii) If M € 6, then ||z]| =1 = py(x) = 1.

Proof.  See [1, Theorem 1.38 and Theorem 1.39] O

3. Main Results

We first give characterizations of infinite matrices mapping the Cesaro vector-
valued sequence space Ces(X, p) into the Orlicz sequence space.

Theorem 3.1. Let p = (px) be a bounded sequence of positive real num-
bers with py, > 1 for all k € N and A = (f{!) an infinite matriz. Then
A € (Ces(X,p), L) if and only if

(1) for each k € N, (fi!(x))pe; € €y for allz € X and

(2) there exists mg € N such that

sup sup Z(Mo (mo P f1) () < 1.

koflzll<1,=

Proof. Assume that A € (Ces(X,p), ), we want to show conditions hold.
Since eF(x) € Ces(X,p) for all z € X and all k € N, we have Ae*(z) € £y,
so (1) is obtained. By Zeller’s theorem, we have that A : Ces(X,p) — lyf
is continuous. Then there exists mg € N such that

z = (z) € Ces(X,p), || < x = [[Az| <1 (3.1)
Let # € X with ||z|| <1 and k € N. We have m,"*e*(z) € Ces(X,p) and
lmg ™ e* ()| < ;5 By (3.1) we have [[(mg ™ fi!(2))52y || < [|A(mg P e (2))]| <
1. By Proposition 2.2(i) we obtain that Y 2 | M (my"* f*(x)) < 1. This im-
plies that

sup sup > (Mo (my™ fi))(z) < 1,

koflzl<1,=



thus condition (2) holds.

Conversely, assume that the conditions (1) and (2) hold. By (2), there
exists mo € N such that > o2 M(mg™* fi*(z)) <1 for all k € N and all
x € X with ||z|| < 1. From Proposition 2.2(i) we have that
| A(mg PEeR () || < [[(mgP* f(x))32,|| <1 for all k € N and all z € X with
|lz|| < 1. Hence, for z € X with = # 0, we have

[A(mg P b (@)l < (m™ fir@)s2 ]l < =l (3.2)
Let x = (x) € Ces(X,p) and k € N. By (3.2) we have

lA* @)l = [[A(mg™ - mg*e® (@)l
= mgH[[Amg™ - e (x)]

< mp" - [l

k
mg* - Z [[n (3.3)
n=1

IN

Since, for all z = (z3,) € Ces(X, p) we have that > 7% (1 22:1 ||zn]|)PE < 0o
when py, > 1. Let 377, (1 Sk ll#al)Pr = L. Fixed for each k, so

k
(3 feal) < L. (3.4)

n=1

By (3.3) and (3.4) we have,

[e's) 00 k
DA @l < D> mgt - O laal)
k=1 k=1 n=1

k k
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k=1
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o0

k k
1, Pe_ _
= mg E E |z ])P* - ((E)p’“_l E ”an)l Pe G = sgppk
n:l n=1

k=1
0o k k
< mfy Z||$n||)p’“(1'ZH%H)I_”’“
k=1 =1
00
< mf Yy ( Z | n]|)P (L) P : L = max(1,inf L)
k=1
i 1
< mg TR lnfkka(%ZHwnH)pk
k=1 n=1
e 1 k
= _ p . _ Grl-M .
= Vz(kZHwnH)’“ Vo=mi LY, M = inf py
k=1 n=1
<

Therefore > 7%, Ae () converges absolutely in ). Since £ is Banach,
S22, AeF(xg) converges in £y, Let y = (yx) € £y be the sum of the series
S5, Ae¥(z1). By continuity of py,, we have for each m € N,

Y = () = Tim S pu(Aek () = T S f ()
k=1 k=1

This implies that Az exists and (Az)m = > pey f(2k) = Ym, so that
Az € lyy.

Theorem 3.2. Let p = (pg) be a bounded sequence of positive real numbers
with py > 1 for all k € N and A = (f}) an infinite matriz. Then A €
(Ces(X,p), har) if and only if

1) for each k € N, (f*(x))>% € hps for all x € X and
k n=1

(2) there exists mg € N such that

sup sup Z (M o (mg™*f))(z) <1

kEolz)<1, 5

Proof. Since hys is a closed subspace of £, the theorem is obtained by
applying Theorem 3.1 and Proposition 2.1(v). O



Theorem 3.3. For an infinite matriz A = (f}), A € (Ces(X),ln) if and
only if

(1) for each k € N, (fi'(x))pL; € €y for allz € X and

(2) there exists mg € N such that

o

M o ~1gn 1.
sipiﬁglnz::l( (mg fi))(z) <

By Theorem 3.1 and M(t) = [t|", » > 1, we have {j; = ¢,. We have this
result.

Corollary 3.4. Let p = (px) be a bounded sequence of positive real numbers
with pi, > 1 for allk € N and r > 1. Then for an infinite matriz A = (f}}),
A € (Ces(X,p), L) if and only if

(1) for each ke N, Y > |fi(x)|" < oo for allz € X and

(2) there exists mg € N such that

o0
sup sup > [mg?* f(z)[" < 1.
Eojlzl<1, 5

Corollary 3.5. For r > 1 and for an infinite matric A = (f), A €
(Ces(X),4y) if and only if
(1) for each ke N, Y > |fi(x)|" < oo for allz € X and

(2) Supg SUP|g<1 2onet |fi(2)]" < 0.
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