Matrix Transformations from Cesaro Vector-Valued Sequence Space into Orlicz Sequence Space

Oravan Arunphalungsanti and Kantita Wijanto
Department of Mathematics, Faculty of Science, Mahanakorn University of Technology, Bangkok 10530, Thailand
e-mail: orav_ple@yahoo.com

Abstract. The purpose of this paper, we give matrix characterizations from Cesaro vector-valued sequence space $\operatorname{Ces}(X, p)$ into Orlicz sequence space ℓ_{M} and by using this result we obtain matrix characterizations from $\operatorname{Ces}(X, p)$ into h_{M} and ℓ_{r}, where $p=\left(p_{k}\right)$ is a bounded sequence of positive real numbers such that $p_{k}>1$ for all $k \in N$.

1. Introduction

Let $(X,\|\|$.$) be a Banach space with a scalar field K$, the space of all sequences in X is denote by $W(X)$ and let $\Phi(X)$ denote the space of all finite sequences in X. When $X=\mathbb{R}$ or \mathcal{C}, the corresponding spaces are written as W and Φ. Let N be the set of all natural numbers, we write $x=\left(x_{k}\right)$ with $x_{k} \in X$ for all $k \in N$. A sequence space in X is linear subspace of $W(X)$. Let $p=\left(p_{k}\right)$ be a bounded sequence of positive real numbers, the X-valued sequence space $c_{0}(X, p), c(X, p), \ell_{\infty}(X, p), \ell(X, p), \operatorname{Ces}(X, p), \ell_{\infty}(X, p), E_{r}(X, p)$ and $F_{r}(X, p)$ are define by:

$$
\begin{aligned}
c_{0}(X, p) & =\left\{x=\left(x_{k}\right): \lim _{k \rightarrow \infty}\left\|x_{k}\right\|^{p_{k}}=0\right\}, \\
c(X, p) & =\left\{x=\left(x_{k}\right): \lim _{k \rightarrow \infty}\left\|x_{k}-a\right\|^{p_{k}}=0 \text { for some } a \in X\right\}, \\
\ell_{\infty}(X, p) & =\left\{x=\left(x_{k}\right): \sup _{k}\left\|x_{k}\right\|^{p_{k}}<\infty\right\}, \\
\ell(X, p) & =\left\{x=\left(x_{k}\right): \sum_{k=1}^{\infty}\left\|x_{k}\right\|^{p_{k}}<\infty\right\}, \\
\operatorname{Ces}(X, p) & =\left\{x=\left(x_{k}\right): \sum_{k=1}^{\infty}\left(\frac{1}{k} \sum_{n=1}^{k}\left\|x_{n}\right\|\right)^{p_{k}}<\infty\right\},
\end{aligned}
$$

[^0]Key words and phrases: Sequence space, Matrix transformation, Orlicz sequence space.

$$
\begin{aligned}
& \underline{\ell_{\infty}}(X, p)=\left\{x=\left(x_{k}\right): \lim _{k \rightarrow \infty}\left\|\delta_{k} x_{k}\right\|=0 \quad \text { for each }\left(\delta_{k}\right) \in c_{0}\right\} \\
& E_{r}(X, p)=\left\{x=\left(x_{k}\right): \sup _{k} k^{-r}\left\|x_{k}\right\|^{p_{k}}<\infty\right\}, \text { and } \\
& F_{r}(X, p)=\left\{x=\left(x_{k}\right): \sum_{k=1}^{\infty} k^{r}\left\|x_{k}\right\|^{p_{k}}<\infty\right\}
\end{aligned}
$$

When $X=K$, the scalar field of X, the corresponding spaces are written as $c_{0}(p), c(p), \ell_{\infty}(p), C e s(p), \underline{\ell_{\infty}}(p), E_{r}(p)$ and $F_{r}(p)$ respectively.

Grosse and Erdmann [2, 3] investigated and gave characterization for infinite matrices to transform between sequence spaces of Maddox. In 1993, F. M. Khan and M. A. Khan[4] gave characterization of infinite matrices of Cesàro sequence space $(C e s(p, s))$ into the space of convergent series (cs) and the space of bounded series $(b s)$. S. Suantai $[6,7]$ gave characterization of infinite matrices mapping Nakano vector-valued sequence space $\ell(X, p)$ into any $B K$-space, ℓ_{∞} and $\ell_{\infty}(q)$. S. Suantai $[9,11]$ has given matrix characterizations from $\ell_{\infty}(X, p), c_{0}(X)$ and $\ell(X, p)$ into the Orlicz sequence space.

In this paper, we interested to find characterizations from $\operatorname{Ces}(X, p)$ into Orlicz sequence space.

2. Notation and Definitions

For $z \in X$ and $k \in N$, we let $e^{(k)}(z)$ be the sequence $(0,0,0, \ldots, 0, z, 0, \ldots)$ with z in the $k^{t h}$ position. For a fixed scalar sequence $u=\left(u_{k}\right)$ the sequence space E_{u} is defined by

$$
E_{u}=\left\{x=\left(x_{k}\right) \in W(X):\left(u_{k} x_{k}\right) \in E\right\}
$$

Suppose that the X-valued sequence space E is endowed with some linear topology τ. Then E is called a K-space if for each $n \in N$ the $n^{\text {th }}$ coordinate mapping $p_{n}: E \rightarrow X$, defined by $p_{n}(x)=x_{n}$, is continuous on E. If, in addition, (E, τ) is a Fréchet(Banach, LF-, LB-) space, then E is called an $F K-(B K-L F K-, L B K-)$ space. Now, suppose that E contains $\Phi(X)$. Then E is said to have property $\mathbf{A B}$ if the set $\left\{\sum_{k=1}^{n} e^{k}\left(x_{k}\right): n \in N\right\}$ is bounded in E for every $x=\left(x_{k}\right) \in E$. It said to have property AK if $\Sigma_{k=1}^{n} e^{k}\left(x_{k}\right) \rightarrow x \in E$ as $n \rightarrow \infty$ for every $x=\left(x_{k}\right) \in E$. It has property $\mathbf{A D}$ if $\Phi(X)$ is dense in E. Let $A=\left(f_{k}^{n}\right)$ with f_{k}^{n} in X^{\prime}, the topological dual of X. Suppose that E is a space of X-valued sequences and F a space of scalar-valued sequences. Then A is said to map E into F, written $A: E \rightarrow F$ if for each $x=\left(x_{k}\right) \in E, A_{n}(x)=\Sigma_{k=1}^{\infty} f_{k}^{n}\left(x_{k}\right)$ converges for each $n \in N$ and if the sequence $A x=\left(A_{n}(x)\right) \in F$. We denote by (E, F)
the set of all infinite matrices mapping E into F. If $u=\left(u_{k}\right)$ and $v=\left(v_{k}\right)$ are scalar sequences, let

$$
{ }_{u}(E, F)_{v}=\left\{A=\left(f_{k}^{n}\right):\left(u_{n} v_{k} f_{k}^{n}\right)_{n, k} \in(E, F)\right\}
$$

If $u_{k} \neq 0$ for all $k \in N$, we write $u^{-1}=\left(\frac{1}{u_{k}}\right)$.
A function $M: \mathbb{R} \rightarrow[0, \infty)$ is said to be an Orlicz function if it is even, convex, continuous and vanishing only at 0 . We define the Orlicz sequence space by the formula

$$
\ell_{M}=\left\{x=\left(x_{k}\right) \in \ell^{0}: \rho_{M}(c x)=\sum_{k=1}^{\infty} M\left(c x_{k}\right)<\infty \text { for some } c>0\right\}
$$

where ℓ^{0} stands for the space of all real sequences. We consider ℓ_{M} equipped with the Luxemburg norm

$$
\|x\|=\inf \left\{\varepsilon>0: \rho_{M}\left(\frac{x}{\varepsilon}\right) \leq 1\right\}
$$

Let h_{M} denote the subspace order continuous elements, i.e

$$
h_{M}=\left\{x=\left(x_{k}\right): \rho_{M}(c x)<\infty \quad \text { for any } \quad c>0\right\} .
$$

It is know that ℓ_{M} is a BK-space and h_{M} is a closed subspace of ℓ_{M}.
We say that an Orlicz function M satisfiesthe δ_{2} condition $\left(M \in \delta_{2}\right.$ for short) if there exist constants $k \geq 2$ and $u_{0}>0$ such that

$$
M(2 u) \leq K M(u)
$$

whenever $|u| \leq u_{0}$.
In C. Sudsukh [8], this Proposition is useful to characterize condition of matrix transformations.

Proposition 2.1. Let E and $E_{n}(n \in N)$ be X-valued sequence spaces, and F and $F_{n}(n \in N)$ scalar sequence space, and let u and v be sequences of real numbers with $u_{k} \neq 0$ for all $k \in N$. Then we have
(i) $\left(\bigcup_{n=1}^{\infty} E_{n}, F\right)=\bigcap_{n=1}^{\infty}\left(E_{n}, F\right)$,
(ii) $\left(E, \bigcap_{n=1}^{\infty} F_{n}\right)=\bigcap_{n=1}^{\infty}\left(E, F_{n}\right)$,
(iii) $\left(E_{u}, F_{v}\right)=_{v}(E, F,)_{u^{-1}}$,
(iv) $\left(E_{1}+E_{2}, F\right)=\left(E_{1}, F\right) \cap\left(E_{2}, F\right)$,
(v) $\left(E, F_{1}\right)=\left(E, F_{2}\right) \cap\left(\Phi(X), F_{1}\right)$ if E an $F K$-space with $A D, F_{2}$ is an FK-space and F_{1} is a closed subspace of F_{2}.

Proposition 2.2. Let M be Orlicz function and $x \in \ell_{M}$.
(i) If $\|x\| \leq 1$, then $\rho_{M}(x) \leq\|x\|$.
(ii) If $\|x\|>1$, then $\rho_{M}(x)>\|x\|$.
(iii) If $M \in \delta_{2}$, then $\|x\|=1 \Rightarrow \rho_{M}(x)=1$.

Proof. \quad See [1, Theorem 1.38 and Theorem 1.39]

3. Main Results

We first give characterizations of infinite matrices mapping the Cesaro vectorvalued sequence space $C e s(X, p)$ into the Orlicz sequence space.

Theorem 3.1. Let $p=\left(p_{k}\right)$ be a bounded sequence of positive real numbers with $p_{k}>1$ for all $k \in N$ and $A=\left(f_{k}^{n}\right)$ an infinite matrix. Then $A \in\left(C e s(X, p), \ell_{M}\right)$ if and only if
(1) for each $k \in N,\left(f_{k}^{n}(x)\right)_{n=1}^{\infty} \in \ell_{M}$ for all $x \in X$ and
(2) there exists $m_{0} \in N$ such that

$$
\sup _{k} \sup _{\|x\| \leq 1} \sum_{n=1}^{\infty}\left(M \circ\left(m_{0}^{-p_{k}} f_{k}^{n}\right)\right)(x) \leq 1
$$

Proof. Assume that $A \in\left(\operatorname{Ces}(X, p), \ell_{M}\right)$, we want to show conditions hold. Since $e^{k}(x) \in \operatorname{Ces}(X, p)$ for all $x \in X$ and all $k \in N$, we have $A e^{k}(x) \in \ell_{M}$, so (1) is obtained. By Zeller's theorem, we have that $A: \operatorname{Ces}(X, p) \rightarrow \ell_{M}$ is continuous. Then there exists $m_{0} \in N$ such that

$$
\begin{equation*}
x=\left(x_{k}\right) \in \operatorname{Ces}(X, p), \quad\|x\| \leq \frac{1}{m_{0}} \Rightarrow\|A x\| \leq 1 \tag{3.1}
\end{equation*}
$$

Let $x \in X$ with $\|x\| \leq 1$ and $k \in N$. We have $m_{0}^{-p_{k}} e^{k}(x) \in \operatorname{Ces}(X, p)$ and $\left\|m_{0}^{-p_{k}} e^{k}(x)\right\| \leq \frac{1}{m_{0}}$. By (3.1) we have $\left\|\left(m_{0}^{-p_{k}} f_{k}^{n}(x)\right)_{n=1}^{\infty}\right\| \leq\left\|A\left(m_{0}^{-p_{k}} e^{k}(x)\right)\right\| \leq$ 1. By Proposition $2.2(\mathrm{i})$ we obtain that $\sum_{n=1}^{\infty} M\left(m_{0}^{-p_{k}} f_{k}^{n}(x)\right) \leq 1$. This implies that

$$
\sup _{k} \sup _{\|x\| \leq 1} \sum_{n=1}^{\infty}\left(M \circ\left(m_{0}^{-p_{k}} f_{k}^{n}\right)\right)(x) \leq 1
$$

thus condition (2) holds.
Conversely, assume that the conditions (1) and (2) hold. By (2), there exists $m_{0} \in N$ such that $\sum_{n=1}^{\infty} M\left(m_{0}^{-p_{k}} f_{k}^{n}(x)\right) \leq 1$ for all $k \in N$ and all $x \in X$ with $\|x\| \leq 1$. From Proposition 2.2(i) we have that $\left\|A\left(m_{0}^{-p_{k}} e^{k}(x)\right)\right\| \leq\left\|\left(m_{0}^{-p_{k}} f_{k}^{n}(x)\right)_{n=1}^{\infty}\right\| \leq 1$ for all $k \in N$ and all $x \in X$ with $\|x\| \leq 1$. Hence, for $x \in X$ with $x \neq 0$, we have

$$
\begin{equation*}
\left\|A\left(m_{0}^{-p_{k}} e^{k}(x)\right)\right\| \leq\left\|\left(m_{0}^{-p_{k}} f_{k}^{n}(x)\right)_{n=1}^{\infty}\right\| \leq\|x\| \tag{3.2}
\end{equation*}
$$

Let $x=\left(x_{k}\right) \in \operatorname{Ces}(X, p)$ and $k \in N$. By (3.2) we have

$$
\begin{align*}
\left\|A e^{k}\left(x_{k}\right)\right\| & =\left\|A\left(m_{0}^{-p_{k}} \cdot m_{0}^{p_{k}} e^{k}\left(x_{k}\right)\right)\right\| \\
& =m_{0}^{p_{k}}\left\|A\left(m_{0}^{-p_{k}} \cdot e^{k}\left(x_{k}\right)\right)\right\| \\
& \leq m_{0}^{p_{k}} \cdot\left\|x_{k}\right\| \\
& \leq m_{0}^{p_{k}} \cdot \sum_{n=1}^{k}\left\|x_{n}\right\| \tag{3.3}
\end{align*}
$$

Since, for all $x=\left(x_{k}\right) \in \operatorname{Ces}(X, p)$ we have that $\sum_{k=1}^{\infty}\left(\frac{1}{k} \sum_{n=1}^{k}\left\|x_{n}\right\|\right)^{p_{k}}<\infty$ when $p_{k}>1$. Let $\sum_{k=1}^{\infty}\left(\frac{1}{k} \sum_{n=1}^{k}\left\|x_{n}\right\|\right)^{p_{k}}=L$. Fixed for each k , so

$$
\begin{equation*}
\left(\sum_{n=1}^{k}\left\|x_{n}\right\|\right) \leq L \tag{3.4}
\end{equation*}
$$

By (3.3) and (3.4) we have,

$$
\begin{aligned}
\sum_{k=1}^{\infty}\left\|A e^{k}\left(x_{k}\right)\right\| & \leq \sum_{k=1}^{\infty} m_{0}^{p_{k}} \cdot\left(\sum_{n=1}^{k}\left\|x_{n}\right\|\right) \\
& =\sum_{k=1}^{\infty} m_{0}^{p_{k}} \cdot \frac{\left(\frac{1}{k} \sum_{n=1}^{k}\left\|x_{n}\right\|\right)}{\frac{1}{k}} \cdot \frac{\left(\frac{1}{k} \sum_{n=1}^{k}\left\|x_{n}\right\|\right)^{p_{k}}}{\left(\frac{1}{k} \sum_{n=1}^{k}\left\|x_{n}\right\|\right)^{p_{k}}} \\
& =\sum_{k=1}^{\infty} m_{0}^{p_{k}} \cdot\left(\frac{1}{k} \sum_{n=1}^{k}\left\|x_{n}\right\|\right)^{p_{k}} \cdot \frac{1}{\frac{1}{k}\left(\frac{1}{k} \sum_{n=1}^{k}\left\|x_{n}\right\|\right)^{p_{k}-1}} \\
& \leq m_{0}^{\sup _{k} p_{k}} \sum_{k=1}^{\infty}\left(\frac{1}{k} \sum_{n=1}^{k}\left\|x_{n}\right\|\right)^{p_{k}} \cdot \frac{1}{\left(\left(\frac{1}{k}\right)^{\frac{p_{k}}{p_{k}-1}} \sum_{n=1}^{k}\left\|x_{n}\right\|\right)^{p_{k}-1}}
\end{aligned}
$$

$$
\begin{aligned}
& =m_{0}^{G} \sum_{k=1}^{\infty}\left(\frac{1}{k} \sum_{n=1}^{k}\left\|x_{n}\right\|\right)^{p_{k}} \cdot\left(\left(\frac{1}{k}\right)^{\frac{p_{k}}{p_{k}-1}} \sum_{n=1}^{k}\left\|x_{n}\right\|\right)^{1-p_{k}} ; G=\sup _{k} p_{k} \\
& \leq m_{0}^{G} \sum_{k=1}^{\infty}\left(\frac{1}{k} \sum_{n=1}^{k}\left\|x_{n}\right\|\right)^{p_{k}}\left(1 \cdot \sum_{n=1}^{k}\left\|x_{n}\right\|\right)^{1-p_{k}} \\
& \leq m_{0}^{G} \sum_{k=1}^{\infty}\left(\frac{1}{k} \sum_{n=1}^{k}\left\|x_{n}\right\|\right)^{p_{k}}(L)^{1-p_{k}} \quad ; L=\max \left(1, \inf _{k} L\right) \\
& \leq m_{0}^{G} \cdot L^{1-\inf _{k} p_{k}} \sum_{k=1}^{\infty}\left(\frac{1}{k} \sum_{n=1}^{k}\left\|x_{n}\right\|\right)^{p_{k}} \\
& =V \sum_{k=1}^{\infty}\left(\frac{1}{k} \sum_{n=1}^{k}\left\|x_{n}\right\|\right)^{p_{k}} \quad ; V=m_{0}^{G} L^{1-M}, M=\inf _{k} p_{k} \\
& <\infty .
\end{aligned}
$$

Therefore $\sum_{k=1}^{\infty} A e^{k}\left(x_{k}\right)$ converges absolutely in ℓ_{M}. Since ℓ_{M} is Banach, $\sum_{k=1}^{\infty} A e^{k}\left(x_{k}\right)$ converges in ℓ_{M}. Let $y=\left(y_{k}\right) \in \ell_{M}$ be the sum of the series $\sum_{k=1}^{\infty} A e^{k}\left(x_{k}\right)$. By continuity of p_{m}, we have for each $m \in N$,

$$
y_{m}=p_{m}(y)=\lim _{n \rightarrow \infty} \sum_{k=1}^{n} p_{m}\left(A e^{k}\left(x_{k}\right)\right)=\lim _{n \rightarrow \infty} \sum_{k=1}^{n} f_{k}^{m}\left(x_{k}\right)
$$

This implies that $A x$ exists and $(A x)_{m}=\sum_{k=1}^{\infty} f_{k}^{m}\left(x_{k}\right)=y_{m}$, so that $A x \in \ell_{M}$.
Theorem 3.2. Let $p=\left(p_{k}\right)$ be a bounded sequence of positive real numbers with $p_{k}>1$ for all $k \in N$ and $A=\left(f_{k}^{n}\right)$ an infinite matrix. Then $A \in$ $\left(\operatorname{Ces}(X, p), h_{M}\right)$ if and only if
(1) for each $k \in N,\left(f_{k}^{n}(x)\right)_{n=1}^{\infty} \in h_{M}$ for all $x \in X$ and
(2) there exists $m_{0} \in N$ such that

$$
\sup _{k} \sup _{\|x\| \leq 1} \sum_{n=1}^{\infty}\left(M \circ\left(m_{0}^{-p_{k}} f_{k}^{n}\right)\right)(x) \leq 1 .
$$

Proof. Since h_{M} is a closed subspace of ℓ_{M}, the theorem is obtained by applying Theorem 3.1 and Proposition 2.1(v).

Theorem 3.3. For an infinite matrix $A=\left(f_{k}^{n}\right), A \in\left(\operatorname{Ces}(X), \ell_{M}\right)$ if and only if
(1) for each $k \in N$, $\left(f_{k}^{n}(x)\right)_{n=1}^{\infty} \in \ell_{M}$ for all $x \in X$ and
(2) there exists $m_{0} \in N$ such that

$$
\sup _{k} \sup _{\|x\| \leq 1} \sum_{n=1}^{\infty}\left(M \circ\left(m_{0}^{-1} f_{k}^{n}\right)\right)(x) \leq 1 .
$$

By Theorem 3.1 and $M(t)=|t|^{r}, r \geq 1$, we have $\ell_{M}=\ell_{r}$. We have this result.

Corollary 3.4. Let $p=\left(p_{k}\right)$ be a bounded sequence of positive real numbers with $p_{k}>1$ for all $k \in N$ and $r \geq 1$. Then for an infinite matrix $A=\left(f_{k}^{n}\right)$, $A \in\left(\operatorname{Ces}(X, p), \ell_{r}\right)$ if and only if
(1) for each $k \in N, \sum_{n=1}^{\infty}\left|f_{k}^{n}(x)\right|^{r}<\infty$ for all $x \in X$ and
(2) there exists $m_{0} \in N$ such that

$$
\sup _{k} \sup _{\|x\| \leq 1} \sum_{n=1}^{\infty}\left|m_{0}^{-p_{k}} f_{k}^{n}(x)\right|^{r} \leq 1 .
$$

Corollary 3.5. For $r \geq 1$ and for an infinite matrix $A=\left(f_{k}^{n}\right), A \in$ $\left(\operatorname{Ces}(X), \ell_{r}\right)$ if and only if
(1) for each $k \in N, \sum_{n=1}^{\infty}\left|f_{k}^{n}(x)\right|^{r}<\infty$ for all $x \in X$ and
(2) $\sup _{k} \sup _{\|x\| \leq 1} \sum_{n=1}^{\infty}\left|f_{k}^{n}(x)\right|^{r}<\infty$.

Acknowledgement. The author would like to thank Dr.Chanan Sudsukh for worth guidance and Mahanakorn University of Technology for financial support to do this paper.

References

[1] S.T. Chen, geometry of Orlicz spaces, Dissertations Math(356), (1996).
[2] Grosse, K. and Erdmann. G., The structure of Sequence Spaces of Maddox, Canad. J. Math., 44(1992), 47-54.
[3] Grosse, K. and Erdmann. G., Matrix Transformations between the Sequence Spaces of Maddox, J. of Math. Anal. Appl., 180(1993), 223-238.
[4] Khan, F. M. and Khan, M. A., Matrix Transformations between Cesaro Sequence Spaces, Indian J. Pure Appl. Math., 25(6)(1994), 641-645.
[5] Maddox, I.J., Elements of Functional Analysis, Cambridge University Press, London, New York, Melbourne, (1970).
[6] Suantai, S., Matrix Transformations between some Vector-Valued Sequence Spaces, Seam., 24(2)(2000).
[7] Suantai, S. and Sudsukh, C., Matrix Transformations of Nakano Vector-Valued Sequence Spaces, Kyungpook Mathematical Journal, 40(1)(2000), 93-97.
[8] Sudsukh, C., Matrix Transformations of Vector-Valued Sequence Spaces, Ph. D. thesis of Chaingmai University, (2000).
[9] Suantai, S., Matrix Transformations from Nakano Vector-Valued Sequence Space into the Orlicz Sequence Space, to appear in the proceeding of functions, Adam Michiscwitz University. Poznan, Poland, (1998).
[10] Wu, C. X. and Lui, L., Matrix Transformations between some Vector-Valued Sequence Spaces, SEA bull, 17(1)(1993), 83-96.
[11] Suantai, S., Matrix Transformations of Orlicz Sequence Spaces, Thai J. of Math., (1) (2003), 29-38.
[12] Sudsukh, C., Arunphalungsanti O. and Pantarakpong P., Matrix Transformations on Cesaro Vector-Valued Sequence Space, Submit to Kyungpook Mathematical Journal.

[^0]: 2000 Mathematics Subject Classification: 46A45.

