
Matrix Transformations from Cesaro Vector-Valued Sequence
Space into Orlicz Sequence Space
1

Oravan Arunphalungsanti and Kantita Wijanto
Department of Mathematics, Faculty of Science, Mahanakorn University of
Technology, Bangkok 10530, Thailand
e-mail : orav_ple@yahoo.com

Abstract. The purpose of this paper, we give matrix characterizations from Cesaro

vector-valued sequence space Ces(X, p) into Orlicz sequence space `M and by using this

result we obtain matrix characterizations from Ces(X, p) into hM and `r, where p = (pk)

is a bounded sequence of positive real numbers such that pk > 1 for all k ∈ N .

1. Introduction

Let (X,‖.‖) be a Banach space with a scalar field K, the space of all se-
quences in X is denote by W (X) and let Φ(X) denote the space of all finite
sequences in X. When X = R or C, the corresponding spaces are written as
W and Φ. Let N be the set of all natural numbers, we write x = (xk) with
xk ∈ X for all k ∈ N . A sequence space in X is linear subspace of W (X). Let
p = (pk) be a bounded sequence of positive real numbers, the X-valued se-
quence space c0(X, p), c(X, p), `∞(X, p), `(X, p), Ces(X, p), `∞(X, p), Er(X, p)
and Fr(X, p) are define by:

c0(X, p) = {x = (xk) : lim
k→∞

‖xk‖pk = 0},
c(X, p) = {x = (xk) : lim

k→∞
‖xk − a‖pk = 0 for some a ∈ X},

`∞(X, p) = {x = (xk) : sup
k
‖xk‖pk < ∞},

`(X, p) = {x = (xk) :
∞∑

k=1

‖xk‖pk < ∞},

Ces(X, p) = {x = (xk) :
∞∑

k=1

(
1
k

k∑

n=1

‖xn‖)pk < ∞},
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`∞(X, p) = {x = (xk) : lim
k→∞

‖δkxk‖ = 0 for each(δk) ∈ c0},
Er(X, p) = {x = (xk) : sup

k
k−r‖xk‖pk < ∞}, and

Fr(X, p) = {x = (xk) :
∞∑

k=1

kr‖xk‖pk < ∞}.

When X = K, the scalar field of X, the corresponding spaces are written
as c0(p), c(p), `∞(p), Ces(p), `∞(p), Er(p) and Fr(p) respectively.

Grosse and Erdmann [2, 3] investigated and gave characterization for
infinite matrices to transform between sequence spaces of Maddox. In 1993,
F. M. Khan and M. A. Khan[4] gave characterization of infinite matrices of
Cesàro sequence space (Ces(p, s)) into the space of convergent series (cs)
and the space of bounded series (bs). S. Suantai[6, 7] gave characterization
of infinite matrices mapping Nakano vector-valued sequence space `(X, p)
into any BK-space, `∞ and `∞(q). S. Suantai[9, 11] has given matrix charac-
terizations from `∞(X, p), c0(X) and `(X, p) into the Orlicz sequence space.

In this paper, we interested to find characterizations from Ces(X, p) into
Orlicz sequence space.

2. Notation and Definitions

For z ∈ X and k ∈ N , we let e(k)(z) be the sequence (0, 0, 0, ..., 0, z, 0, ...)
with z in the kth position. For a fixed scalar sequence u = (uk) the sequence
space Eu is defined by

Eu = {x = (xk) ∈ W (X) : (ukxk) ∈ E}.

Suppose that the X-valued sequence space E is endowed with some linear
topology τ . Then E is called a K-space if for each n ∈ N the nth coordinate
mapping pn : E → X, defined by pn(x) = xn, is continuous on E. If, in
addition, (E, τ) is a Fréchet(Banach, LF-, LB-) space, then E is called an
FK − (BK−, LFK−, LBK−) space. Now, suppose that E contains Φ(X).
Then E is said to have property AB if the set {Σn

k=1e
k(xk) : n ∈ N}

is bounded in E for every x = (xk) ∈ E. It said to have property AK
if Σn

k=1e
k(xk) → x ∈ E as n → ∞ for every x = (xk) ∈ E. It has

property AD if Φ(X) is dense in E. Let A = (fn
k ) with fn

k in X ′, the
topological dual of X. Suppose that E is a space of X-valued sequences and
F a space of scalar-valued sequences. Then A is said to map E into F ,
written A : E → F if for each x = (xk) ∈ E, An(x) = Σ∞k=1f

n
k (xk) converges

for each n ∈ N and if the sequence Ax = (An(x)) ∈ F . We denote by (E, F )
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the set of all infinite matrices mapping E into F . If u = (uk) and v = (vk)
are scalar sequences, let

u(E, F )v = {A = (fn
k ) : (unvkf

n
k )n,k ∈ (E,F )}.

If uk 6= 0 for all k ∈ N , we write u−1 = ( 1
uk

).
A function M : R→ [0,∞) is said to be an Orlicz function if it is even,

convex, continuous and vanishing only at 0. We define the Orlicz sequence
space by the formula

`M = {x = (xk) ∈ `0 : ρM (cx) =
∞∑

k=1

M(cxk) < ∞ for some c > 0}

where `0 stands for the space of all real sequences. We consider `M

equipped with the Luxemburg norm

‖x‖ = inf{ε > 0 : ρM (
x

ε
) ≤ 1}.

Let hM denote the subspace order continuous elements, i.e

hM = {x = (xk) : ρM (cx) < ∞ for any c > 0}.
It is know that `M is a BK-space and hM is a closed subspace of `M .

We say that an Orlicz function M satisfiesthe δ2 condition (M ∈ δ2

for short) if there exist constants k ≥ 2 and u0 > 0 such that

M(2u) ≤ KM(u)

whenever |u| ≤ u0.
In C. Sudsukh [8], this Proposition is useful to characterize condition of

matrix transformations.

Proposition 2.1. Let E and En(n ∈ N) be X-valued sequence spaces, and
F and Fn(n ∈ N) scalar sequence space, and let u and v be sequences of real
numbers with uk 6= 0 for all k ∈ N . Then we have

(i) (
⋃∞

n=1 En, F ) =
⋂∞

n=1(En, F ),

(ii) (E,
⋂∞

n=1 Fn) =
⋂∞

n=1(E, Fn),

(iii) (Eu, Fv) =v (E, F, )u−1 ,

(iv) (E1 + E2, F ) = (E1, F ) ∩ (E2, F ),
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(v) (E, F1) = (E, F2) ∩ (Φ(X), F1) if E an FK-space with AD, F2 is an
FK-space and F1 is a closed subspace of F2.

Proposition 2.2. Let M be Orlicz function and x ∈ `M .

(i) If ‖x‖ ≤ 1, then ρM (x) ≤ ‖x‖.
(ii) If ‖x‖ > 1, then ρM (x) > ‖x‖.
(iii) If M ∈ δ2, then ‖x‖ = 1 ⇒ ρM (x) = 1.

Proof. See [1, Theorem 1.38 and Theorem 1.39] ¤

3. Main Results

We first give characterizations of infinite matrices mapping the Cesaro vector-
valued sequence space Ces(X, p) into the Orlicz sequence space.

Theorem 3.1. Let p = (pk) be a bounded sequence of positive real num-
bers with pk > 1 for all k ∈ N and A = (fn

k ) an infinite matrix. Then
A ∈ (Ces(X, p), `M ) if and only if

(1) for each k ∈ N , (fn
k (x))∞n=1 ∈ `M for all x ∈ X and

(2) there exists m0 ∈ N such that

sup
k

sup
‖x‖≤1

∞∑

n=1

(M ◦ (m−pk
0 fn

k ))(x) ≤ 1.

Proof. Assume that A ∈ (Ces(X, p), `M ), we want to show conditions hold.
Since ek(x) ∈ Ces(X, p) for all x ∈ X and all k ∈ N , we have Aek(x) ∈ `M ,
so (1) is obtained. By Zeller’s theorem, we have that A : Ces(X, p) → `M

is continuous. Then there exists m0 ∈ N such that

x = (xk) ∈ Ces(X, p), ‖x‖ ≤ 1
m0

⇒ ‖Ax‖ ≤ 1. (3.1)

Let x ∈ X with ‖x‖ ≤ 1 and k ∈ N . We have m−pk
0 ek(x) ∈ Ces(X, p) and

‖m−pk
0 ek(x)‖ ≤ 1

m0
. By (3.1) we have ‖(m−pk

0 fn
k (x))∞n=1‖ ≤ ‖A(m−pk

0 ek(x))‖ ≤
1. By Proposition 2.2(i) we obtain that

∑∞
n=1 M(m−pk

0 fn
k (x)) ≤ 1. This im-

plies that

sup
k

sup
‖x‖≤1

∞∑

n=1

(M ◦ (m−pk
0 fn

k ))(x) ≤ 1 ,
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thus condition (2) holds.
Conversely, assume that the conditions (1) and (2) hold. By (2), there

exists m0 ∈ N such that
∑∞

n=1 M(m−pk
0 fn

k (x)) ≤ 1 for all k ∈ N and all
x ∈ X with ‖x‖ ≤ 1. From Proposition 2.2(i) we have that
‖A(m−pk

0 ek(x))‖ ≤ ‖(m−pk
0 fn

k (x))∞n=1‖ ≤ 1 for all k ∈ N and all x ∈ X with
‖x‖ ≤ 1. Hence, for x ∈ X with x 6= 0, we have

‖A(m−pk
0 ek(x))‖ ≤ ‖(m−pk

0 fn
k (x))∞n=1‖ ≤ ‖x‖ (3.2)

Let x = (xk) ∈ Ces(X, p) and k ∈ N. By (3.2) we have

‖Aek(xk)‖ = ‖A(m−pk
0 ·mpk

0 ek(xk))‖
= mpk

0 ‖A(m−pk
0 · ek(xk))‖

≤ mpk
0 · ‖xk‖

≤ mpk
0 ·

k∑

n=1

‖xn‖ (3.3)

Since, for all x = (xk) ∈ Ces(X, p) we have that
∑∞

k=1(
1
k

∑k
n=1 ‖xn‖)pk < ∞

when pk > 1. Let
∑∞

k=1(
1
k

∑k
n=1 ‖xn‖)pk = L. Fixed for each k, so

(
k∑

n=1

‖xn‖) ≤ L. (3.4)

By (3.3) and (3.4) we have,

∞∑

k=1

‖Aek(xk)‖ ≤
∞∑

k=1

mpk
0 · (

k∑

n=1

‖xn‖)

=
∞∑

k=1

mpk
0 · ( 1

k

∑k
n=1 ‖xn‖)

1
k

· ( 1
k

∑k
n=1 ‖xn‖)pk

( 1
k

∑k
n=1 ‖xn‖)pk

=
∞∑

k=1

mpk
0 · ( 1

k

k∑

n=1

‖xn‖)pk · 1
1
k ( 1

k

∑k
n=1 ‖xn‖)pk−1

≤ m
supk pk

0

∞∑

k=1

(
1
k

k∑

n=1

‖xn‖)pk · 1

(( 1
k )

pk
pk−1

∑k
n=1 ‖xn‖)pk−1
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= mG
0

∞∑

k=1

(
1
k

k∑

n=1

‖xn‖)pk · (( 1
k
)

pk
pk−1

k∑

n=1

‖xn‖)1−pk ; G = sup
k

pk

≤ mG
0

∞∑

k=1

(
1
k

k∑

n=1

‖xn‖)pk(1 ·
k∑

n=1

‖xn‖)1−pk

≤ mG
0

∞∑

k=1

(
1
k

k∑

n=1

‖xn‖)pk(L)1−pk ; L = max(1, inf
k

L)

≤ mG
0 · L1−infk pk

∞∑

k=1

(
1
k

k∑

n=1

‖xn‖)pk

= V
∞∑

k=1

(
1
k

k∑

n=1

‖xn‖)pk ;V = mG
0 L1−M , M = inf

k
pk

< ∞.

Therefore
∑∞

k=1 Aek(xk) converges absolutely in `M . Since `M is Banach,∑∞
k=1 Aek(xk) converges in `M . Let y = (yk) ∈ `M be the sum of the series∑∞
k=1 Aek(xk). By continuity of pm, we have for each m ∈ N ,

ym = pm(y) = lim
n→∞

n∑

k=1

pm(Aek(xk)) = lim
n→∞

n∑

k=1

fm
k (xk)

This implies that Ax exists and (Ax)m =
∑∞

k=1 fm
k (xk) = ym, so that

Ax ∈ `M .

Theorem 3.2. Let p = (pk) be a bounded sequence of positive real numbers
with pk > 1 for all k ∈ N and A = (fn

k ) an infinite matrix. Then A ∈
(Ces(X, p), hM ) if and only if

(1) for each k ∈ N , (fn
k (x))∞n=1 ∈ hM for all x ∈ X and

(2) there exists m0 ∈ N such that

sup
k

sup
‖x‖≤1

∞∑

n=1

(M ◦ (m−pk
0 fn

k ))(x) ≤ 1.

Proof. Since hM is a closed subspace of `M , the theorem is obtained by
applying Theorem 3.1 and Proposition 2.1(v). ¤
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Theorem 3.3. For an infinite matrix A = (fn
k ), A ∈ (Ces(X), `M ) if and

only if

(1) for each k ∈ N , (fn
k (x))∞n=1 ∈ `M for all x ∈ X and

(2) there exists m0 ∈ N such that

sup
k

sup
‖x‖≤1

∞∑

n=1

(M ◦ (m−1
0 fn

k ))(x) ≤ 1.

By Theorem 3.1 and M(t) = |t|r, r ≥ 1, we have `M = `r. We have this
result.

Corollary 3.4. Let p = (pk) be a bounded sequence of positive real numbers
with pk > 1 for all k ∈ N and r ≥ 1. Then for an infinite matrix A = (fn

k ),
A ∈ (Ces(X, p), `r) if and only if

(1) for each k ∈ N ,
∑∞

n=1 |fn
k (x)|r < ∞ for all x ∈ X and

(2) there exists m0 ∈ N such that

sup
k

sup
‖x‖≤1

∞∑

n=1

|m−pk
0 fn

k (x)|r ≤ 1.

Corollary 3.5. For r ≥ 1 and for an infinite matrix A = (fn
k ), A ∈

(Ces(X), `r) if and only if

(1) for each k ∈ N ,
∑∞

n=1 |fn
k (x)|r < ∞ for all x ∈ X and

(2) supk sup‖x‖≤1

∑∞
n=1 |fn

k (x)|r < ∞.
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