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Abstract

A ring R is called a right Harada ring if it is right Artinian and every
non-small right R-module contains a non-zero injective submodule. The
first result in our paper is the following: Let R be a right perfect ring.
Then R is a right Harada ring if and only if every cyclic module is
a direct sum of an injective module and a small module; if and only if
every local module is either injective or small. We also prove that a ring
R is QF if and only if every cyclic module is a direct sum of a projective
injective module and a small module; if and only if every local module
is either projective injective or small. Finally, a right QF-3 right perfect
ring R is serial Artinian if and only if every right ideal is a direct sum
of a projective module and a singular uniserial module.
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1. Introduction and Preliminaries

Throughout this paper, all ring are associate rings with identity and all right
R-modules are unitary. For a right R-module M, we denote E(M), J(M) and
Z(M) the injective hull, radical and the singular submodule of M. Especially,
J(R) is the Jacobson radical of the ring R. A right R-module M is called
uniserial if the lattice of its submodules is linear. Call M a serial module if it
is a direct sum of uniserial modules. A ring R is right serial if RR is serial as
a right R-module. A ring R is serial if it is right and left serial. Call a ring R
serial Artinian if it is serial and two-sided Artinian.

Call M a small module if M is small in E(M) otherwise, we call a non-
small module. Dually, a right R-module M is called a co-small module if for
any epimorphism from P to M with P is projective, ker(f) is essential in P.
A non-cosmall module is defined as a not co-small module. A right R-module
is a local module if it has the greatest proper submodule. A ring R is called a
Quasi-Frobenius ring (briefly QF-ring) if it is right self-injective right Artinian.
Call a ring R a right QF-3 ring if E(RR) is projective (see [14] and [21]).

Manabu Harada [9], [10] and [11] has studied some generalizations of QF-
rings by introducing the following two conditions:

(*) Every non-small right R-module contains a non-zero injective submod-
ule;

(**) Every non-cosmall right R-module contains a non-zero projective di-
rect summand.

It should be noted that right perfect rings with (*) and semiperfect rings
with (**) are characterized in terms of ideals in [11],[12] and [13]. Oshiro
[16] gave some characterizations of these kinds of rings and introduced the
definitions of right Harada and right co-Harada rings as follows.

A ring R is called a right Harada ring if it is right Artinian and (*) holds.
A ring R is a right co-Harada ring if it satisfies (**) and ACC on right anni-
hilators.

In this paper, we give some characterizations of right Harada rings and
serial Artinian rings. In section 1, we recall some well-known results which
will be used in this paper. We characterize the classes of right Harada rings
and QF-rings by right perfect rings and cyclic or local modules. Section 3 is
concerned with serial Artinian rings. For convenience, we list some well-known
results here to use in this paper.

Theorem A ([16, Theorem 2.11]) For a ring R, the following conditions are
equivalent:
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(1) R is a right Harada ring;

(2) R is right perfect and satisfies the condition that the family of all pro-
jective modules is closed under taking small covers, i.e., for any exact
sequence P

ϕ→ E → 0, with E is injective and P is projective, ker(ϕ) is
small in P ;

(3) Every right R-module is a direct sum of an injective module and a small
module;

(4) Every injective module is a lifting module.

Theorem B ([11, Theorem 3.6]) Let R be a semiperfect ring and {ei}n
i=1 ∪

{fj}m
j=1 a complete set of orthogonal primitive idempotents of R, where each

eiR is non-small, i = 1, . . . n, and fjR is small, j = 1, . . . m. Then (**) holds
if and only if:

(a) n ≥ 1 and eiR is injective, i = 1, . . . , n;

(b) For each fj, there exists ei such that fjR can be embedded in eiR;

(c) For each fj, there exists an integer nj such that eiJ
t is projective for

0 ≤ t ≤ ni and eiJ
ni+1 is a singular module, where J = J(R);

Further in this case, it is shown that every submodule eiB in eiR is either
contained in eiJ

ni+1 or equal to some eiJ
i.

Theorem C ([16]) Let R be a right Artinian ring. The R is a serial ring if
and only if for any primitive idempotent f of R, the injective hull E(fR) is a
uniserial module.

2 Right Harada rings

In this section, we will prove that the classes of right Harada rings and QF-
rings are both characterized by perfect rings and cyclic (or local) modules.
The proof of the following Lemma is routine and therefore is omitted.

Lemma 1 If {Xi, i = 1, . . . , n} is a family of small modules, then X =
∑
i

Xi

is also small.

Proposition 2 Let R be a right perfect ring. Then the following conditions
are equivalent:
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(1) The condition (*) holds;

(2) Every non-small cyclic module contains a non-zero injective module;

(3) Every local module is either injective or small.

Proof (1) ⇒ (2) is clear. We now prove (2) ⇒ (3). Let M be a local module.
Since R is right perfect, it follows from [5, Proposition 18.23] that there exists
a primitive idempotent g of R such that M ∼= gR/G, G ⊂ gR. Hence M is an
indecomposable cyclic module. Therefore M either injective or small by (2).

(3) ⇒ (1) Let M be a non-small module and E = E(M). Since R is
right perfect, it follows that M 
⊂ EJ (since EJ is small in E). Take any
m ∈ M \ EJ. Then mR is a non-small module. Let {ei|i = 1, 2, . . . , n} be an

orthogonal system of primitive idempotents of R. Then mR =
n∑

i=1

meiR. By

Lemma 1, there exists an idempotent ei such that meiR is non-small. Since
meiR 
= 0 and meiR ∼= eiR/H, H ⊂ eiR, the module meiR is local. It follows
from (3) that meiR is injective. Thus M contains a non-zero meiR, hence (∗)
holds. �

Theorem 3 Let R be a right perfect ring. Then the following conditions are
equivalent:

(1) R is a right Harada ring;

(2) Every cyclic module is a direct sum of an injective module and a small
module;

(3) Every local module is either injective or small.

Proof (1) ⇒ (3) By Theorem A.
(2) ⇒ (3) By the same argument as that of (2) ⇒ (3) in the proof of

Proposition 2.
(3) ⇒ (1) By Proposition 2, R satisfies (∗). Hence by [12, Theorem 5], R

is a right Artinian ring, and therefore it is a right Harada ring. �

Theorem 4 Let R be a right perfect ring. Then the following conditions are
equivalent:

(1) R is a QF-ring;

(2) Every cyclic module is a direct sum of a projective injective module and
a small module;
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(3) Every local module is either projective injective or small.

Proof (1) ⇒ (2) Since R is QF, it is a right Harada ring by [16, Theorem 4.3].
For a right R-module M, we have M = I ⊕S, with I is injective ans S is small
by Theorem A. It is clear that I is projective, proving (2).

(2) ⇒ (3) It follows from Proposition 2.

(3) ⇒ (1) It suffices to show that every injective module is projective.
Since R is a right perfect ring satisfying (3), in view of Theorem 3, R is a right
Harada ring. Let Q be an injective module. Then Q has a decomposition
Q =

⊕
I

Qi, where each Qi is a non-zero indecomposable module. We will show

that each Qi is projective for each i ∈ I. Since R is right Artinian, Qi contains a
maximal submodule Q′

i (see [1, Theorem 28.4]). Let X be a proper submodule
of Qi such that X 
⊂ Q′

i. Then Q′
i +X = Qi = E(Q′

i). Hence Q′
i is a non-small

module. Since R is a right Harada ring, it implies that Q′
i contains a proper

direct summand, a contradiction. Thus Q′
i is the greatest proper submodule

of Qi, i.e., Qi is a local module. Hence, by (3), Qi is projective. It follows that
Q is a projective module, proving that R is QF.

3. Characterizations of serial Artinian rings

First we recall a remark due to M. Harada in [11] as folllows:

Remark 5 Let R be a right perfect ring. Then R has a decomposition of the
form:

R =
n⊕

i=1

eiR ⊕
m⊕

m=1

fjR

where {ei, i = 1, . . . , n} ∪ {fj, j = 1, . . . , m} is the set of mutually orthogonal
idempotents with each eiR is non-small and fjR is a small module, and always
we have n ≥ 1.

Lemma 6 Let R be a right perfect ring and M a uniserial right R-module.
Then every submodule of M is cyclic and hence M is a Noetherian module.

Proof Let N be a non-zero submodule of M. Since R is right perfect, it follows
from [1, Theorem 28.4] that N contains a maximal submodule N ′. Take any
x ∈ N \ N ′. Then xR 
⊂ N ′. Since M is uniserial, we must have N ′ ⊂ xR.
Hence N = xR, proving that M is a Noetherian module. �
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Lemma 7 Let R be a right perfect ring. If E(gR) is uniserial for any primitive
idempotent g of R, then R is serial Artinian.

Proof By Theorem C, it is enough to show that R is right Artinian. Since R
is right perfect, we can write

R =
n⊕

i=1

giR

where {gi, i = 1, . . . n} is a system of orthogonal primitive idempotents. For
each i, E(giR) is uniserial, therefore by Lemma 6, it is Noetherian and hence
R is right Noetherian. Combining with the assumption that R is right perfect,
it follows that R is right Artinian by [1, Corollary 15.23] and this completes
our proof. �

Theorem 8 Let R be a right perfect ring. Then the following conditions are
equivalent:

(1) R is a serial Artinian ring;

(2) Every cyclic module is a direct sum of an injective module and a uniform
small module;

(3) Every local module is either injective or uniform small.

Proof (1) ⇒ (2) Let R be a right perfect serial ring. Then by [16, Theorem
4.5], R is a right Harada ring. For a cyclic module M, we have M = I ⊕ S,
where I is injective and S is small (see Theorem A). Since R is serial Artinian,
S =

⊕
j

Sj with Sj is uniserial. It follows from [11, Lemma 1.1] that Sj is small,

proving (2).
(2) ⇒ (3) by Proposition 2.
(3) ⇒ (1) Supppose that R has a decomposition as in Remark 5. Then by

(3), eiR is injective for each ei ∈ {ei, i = 1, . . . , n}. Hence by [11, Theorem
1.3], the ring R is right QF-3. It follows that E(fkR) is projective for each
fk ∈ {fj, j = 1, . . . , m}. Therefore E(fkR) =

⊕
i∈I,j∈J

eijR, eijR ∼= eiR, I ⊂
{1, . . . .n}. Since fkR is uniform by (3), it implies E(fkR) ∼= eiR for some
idempotent ei. Next, we will show that eiR is uniserial for all ei, i = 1. . . . , n.

Let U, V be non-zero submodules of eR, where e ∈ {ei, 1 ≤ i ≤ n}. Put
I = U ∩ V. Assume that I 
= U and I 
= V. Then the module B = eR/I is
not uniform, and hence B is not injective because it is indecomposable. Thus
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the local module B is neither uniform, nor injective, this contradicts to the
assumption (3). Therefore, either I = U or I = V, proving that eR is a
uniserial module. In view of Lemma 7, it follows that R is a serial Artinian
ring. �

Lemma 9 ([11],[19]) The following statements hold for non-cosmall modules:

(1) A right R-module M is non-cosmall if it does not coincide with its sin-
gular submodule;

(2) If an R-module M contains a non-zero projective submodule, then it is
non-cosmall.

Lemma 10 Let R be a right QF-3 semiperfect ring. If every uniform principal
right ideal of R is either projective or singular as a right R-module, then R
satisfies two conditions (a) and (b) of Theorem B.

Proof Since R is semiperfect, it has a decomposition of the form

R = e1R ⊕ e2R ⊕ · · · ⊕ enR,

where {ei 1 ≤ i ≤ n} is the set of mutually orthogonal primitive idempotents.
Since R is right QF-3 (i. e., E(RR) is projective), it follows that there exists
at least one ei such that eiR is injective. Without lost of generality we may
assume that eiR is injective for 1 ≤ i ≤ k and ejR is not injective with
k + 1 ≤ j ≤ n. take e = ej, k + 1 ≤ j ≤ n. Since E(RR) is projective, so is
E(eR). Hence

E(eR) =
k⊕

i=1

t(i)⊕

t=1

eitR

where eitR ∼= eiR for 1 ≤ t ≤ t(i). Put

Q =
k⊕

i=1

t(i)⊕

t=1

eitR

and let α : E(eR) → Q be an isomorphism and πit :
k⊕

i=1

t(i)⊕
t=1

eitR −→ eitR the

projections. Let F = α(eR) and Fit = πit(F ) ⊂ eitR ∼= eiR. Then Fit is cyclic.
It is easy to see that Fit is isomorphic to a principal right ideal of R. Moreover,
Fit is uniform. Hence by hypothesis, Fit is either projective or singular for all
pairs (i, t).
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Suppose that Fit are singular for all pairs (i, t). It follows that F is singular,
since F ⊂ ⊕

i

Fit, which is a contradiction to the fact that F ∼= eR. Therefore

there exists a pair (i0, t0) such that Fi0to is non-zero projective. Let p = πi0t0|F ,

induced by the projection, and consider the exact sequence F
p→ Fi0to → 0

with Fi0t0 is projective. Then F = kerp ⊕ F ′, for some F ′ ∼= Fi0t0. Since
F (∼= eR) is indecomposable and F ′ 
= 0, it implies that kerp = 0, hence
F ∩ ⊕

i�=i0,t �=t0

eitR = 0, because F ⊂ eQ ( i.e., F is essential in Q). Therefore

Q = ei0t0R. Thus eR ∼= F ⊂ ei0t0R = ei0R. Hence R satisfies both conditions
(a) and (b) of Theorem B and our Lemma has been proved. �

Lemma 11 ([11, Theorem 3.6]) Let R be a semiperfect ring and e a primitive
idempotent of R such that eR is injective. Suppose that every submodule of eR
is either projective or singular. Then there exists an integer n such that eJ t is
projective for 0 ≤ t ≤ n and eJn+1 is singular, where J is the Jacobson radical
of R.

Lemma 12 Let R be a right QF-3 right perfect ring and e ∈ R a primitive
idempotent of R such that eR is injective. If every 2-generated right submodule
of eR is either projective or singular, then every submodule of eR is either
projective or singular.

Proof It is clear that eR is uniform. Let Z(eR) be the singular submodule
of eR. We first prove that eR/Z(eR) is uniserial. Suppose on the contrary
that there are submodules U and V of eR such that Z(eR) ⊂ U ∩ V and U 
⊂
V, V 
⊂ U. Take u ∈ U \V and v ∈ V \U. Consider the module X = uR + vR.
Since X is a 2-generated right submodule of eR, by assumption, it is projective
and singular. But both uR and vR are not singular, X must be not singular.
Hence X is projective. Let X1 and X2 be maximal submodules of uR and vR
respectively. Then X1+vR and X2+uR are distinct maximal submodules of X.
This contradicts to the fact that X is a projective indecomposable module on
a right perfect ring. It would imply that eR/Z(eR) is a uniserial module. We
now show that eR/Z(eR) has finite length. Let X1 be the largest submodule
of eR. Since R is right perfect, it follows from [1, Theorem 28.4] that X1 (here,
X1 = rad(eR)) contains a maximal submodule X2. Continuing this process we
get a strictly descending chain

eR ⊃ X1 ⊃ X2 ⊃ · · · ⊃ Xn ⊃ · · · ⊃ Z(eR).

We will prove that this chain is stationary. It is clear that each Xi is a local
module, hence each Xi is an epimorphism image of fR for some primitive
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idemppotent f of R. Since R is right QF-3, it follows that fR is uniform,
and hence Xi is projective or singular. But Xi ⊃ Z(eR), and Xi 
= Z(eR), it
follows that each Xi is projective. We claim that for i 
= j, Xi 
∼= Xj .

Suppose on the contrary that there is an isomorphism ϕ : Xi → Xj . Since
eR is injective, ϕ can be extended to ϕ̄ : eR → eR and ϕ̄ is also an isomor-
phism. From this we obtain eR/Xi

∼= eR/Xj , and this contradicts to the fact
that length(eR/Xi) 
=length (eR/XCj). Since the representative set of R is
finite, it implies that the chain X1 ⊃ X2 ⊃ . . . must be stationary. Therefore
the condition (c) of theorem B is satisfied, proving our Lemma. �

Theorem 13 Let R be a semiperfect ring. Then the following conditions are
equivalent:

(1) (**) holds;

(2) R is right QF-3 and every right ideal is a direct sum of a projective
module and a singular module.

(3) R is right QF-3 and every uniform right ideal is either projective or
singular.

Proof (1) ⇒ (2). In view of Theorem B, we see that E(RR) is projective, i.e.,
R is right QF-3. Moreover, R has finite right Goldie dimension. Let B be a
right ideal of R. If B is non-cosmall, then by (**), we have B = B1 ⊕B ′

1 with
B1 is non-zero and projective.

Again, if B ′
1 is non-cosmall, then B ′

1 = B2 ⊕ B ′
2, with B2 is non-zero and

projective. Since RR has finite Goldie dimension, we get Bi is finite dimensional
and therefore after a finite number of steps, we get B = B1 ⊕ · · · ⊕ Bk ⊕ B ′

k,
where B1, . . . , Bk are projective and B ′

k is cosmall, i.e., singular (Lemma 9).
Hence (2) holds.

(2) ⇒ (3). Obvious.

(3) ⇒ (1). By Lemmas 10 and 11. �

Theorem 14 Let R be a right perfect ring. The following conditions are
equivalent:

(1) R satisfies (**);

(2) R is right QF-3 and every 2-generated right ideal is a direct sum of a
projective module and a singular module;
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(3) R is right QF-3 and every uniform 2-generated right ideal is either pro-
jective or singular.

Proof The proof of (1) ⇒ (2) is similar to that of Theorem 13. The implication
(2) ⇒ (3) is obvious. From Lemmas 10 and 12, it follows that R satisfies three
conditions (a), (b) and (c) of Theorem B. Therefore, R satisfies (**), proving
(3) ⇒ (1). �

Theorem 15 The following conditions are equivalent for a right QF-3 semiper-
fect ring R.

(1) R is a serial Artinian ring;

(2) Every right ideal B of R has a decomposition of the form B = B0 ⊕⊕
1≤i≤n

Bi, with B0 is projective and each Bi(1 ≤ i ≤ n) is a singular

uniserial module of finite length;

(3) Every right ideal of R is either a projective module or a singular uniserial
module of finite length.

Proof (1) ⇒ (2). Let R be a serial Artinian ring. Then R is a right co-Harada
ring by [16, Theorem 4.5]. Hence for any right ideal B of R, B = B0⊕B ′, where
B0 is projective and B ′ is singular by [16, Theorem 3.18]. Then B ′ =

⊕
i∈I

Bi,

where each Bi is uniserial with finite length, proving (2).
(2) ⇒ (3). Obviously.
(3) ⇒ (1). Since R is right QF-3 and semiperfect, it follows from Theorem

13 that R satisfies the condition (**). By applying Theorem B, R has a
decomposition

R =
n⊕

i=1

eiR ⊕
n⊕

j=1

fjR,

where eiR is injective and fjR is small. Moreover for each j we have E(fjR) ∼=
eiR for some i. By Theorem C, in order to prove that R serial, it suffices to
show that R is right Artinian and each eiR is uniserial, i ∈ {1, 2, . . . , n}.
Take any e ∈ {ei, i = 1, . . . n} and consider the module eR with its singular
submodule Z = Z(e). By Theorem B (3), Z is a uniserial module with finite
length. Therefore, eR is an Artinian module. On the other hand, again by
Theorem B, we have either eB ⊂ Z or Z ⊂ eB. Since Z and eR/Z are both
uniserial, it follows that eR is a uniserial module. Moreover, eR/Z is of finite
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length. It is now clear that R is right Artinian and E(eR) is uniserial for any
primitive idempotent e of R. The proof is now complete. �

Theorem 16 Let R be a right QF-3 right perfect ring. The following conditions
are equivalent:

(1) R is serial Artinian;

(2) Every right ideal of R is a direct sum of a projective module and a singular
uniserial module.

(3) Every uniform 2-generated right ideal is either projective or singular unis-
erial.

Proof The proof of (1) ⇒ (3) is similar to that of Theorem 15 and (2) ⇒ (3)
is obvious. We now prove that (3) ⇒ (1). Clearly, R satisfies (**) by Theorem
14. By Remark 5, we can write R in the form:

R =
n⊕

i=1

eiR ⊕
m⊕

j=1

fjR

with properties in the Remark 5.
By Theorem B, we can see that each eiR is injective and for each j, we

have E(fjR) ∼= eiR for some i = 1, . . . , n. Using Lemma 7, we now show that
each eiR is a uniserial module, i = 1, . . . , n. Put Z = Z(eiR). Since R satisfies
(**), by the same way as in Theorem 15, we can see that eiR/Z is a uniserial
module with finite length, and for every right ideal B of R, we have either
Z ⊂ eiB or eiB ⊂ Z. Therfore, it suffices to show that Z is also a uniserial
module. We can suppose that Z 
= 0.

Let U, V be non-zero submodules of Z. If U 
⊂ V and V 
⊂ U, we can take
any u ∈ U \ V and v ∈ V \U, and consider the module C = uR + vR. Then C
is a uniform 2-generated right ideal of R and C is singular. However C is not
uniserial, since uR 
⊂ vR and vR 
⊂ uR, and this contradicts to the hypothesis
(3). Hence, either U ⊂ V or V ⊂ U, proving that Z(eR) is uniserial. The
proof is now complete. �
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