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Abstract. In this paper, we proposed two model assisted estimators of the
population total and the total in a given set in inverse random sampling with
replacement. The precision of the proposed estimators are compared with the
estimators given by Greco and Naddeo (2007). The simulation results show that
the precision of the two proposed estimators and the Greco-Naddeo estimators
are not much different at low correlation between the study (Y) and the auxiliary
(X) variables. With high correlation between the variables, the two proposed
estimators are more precise than the Greco-Naddeo estimators.

1 Introduction

Inverse sampling is a method of sampling which requires continued drawing
of units until certain specified conditions dependent on the results of those
drawings have been fulfilled. The population may be divided into 2 disjoint
subgroups, a group satisfying some condition, denoted by C and another group

not satisfying the condition, denoted by C. We do not know which set a unit

belongs to until the unit is sampled and observed. For this situation, we may
use inverse sampling design which requires continue drawing until a fixed
number of units in the set C are obtained in the sample.

Recently, many papers on inverse sampling appeared in various statistical
journals. Christman and Lan (2001) considered inverse simple random
sampling with and without replacement. They gave an unbiased estimator of
the population total and its variance for each case of sampling. Salehi and
Seber (2001, 2004) also considered inverse simple random sampling without
replacement. They gave an unbiased estimator of the population total and its
variance based on the Murthy’s estimator. Greco and Naddeo (2007)
considered inverse sampling with replacement when the population units were
drawn with unequal probabilities. They derived an unbiased estimator of the
population total, its variance and an unbiased variance estimator under the
design. For inverse simple random sampling, they also gave an estimator of the
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population total and its variance which was equivalent to the expression given
by Christman and Lan (2001).

In some situations, estimators of certain parameters can be derived from
information on auxiliary variable. Sarndal, et. al (1992) proposed model

assisted estimators to improve its precision. In this study, we used model
assisted approach to improve the traditional estimators under the inverse
random sampling with replacement.

2 Traditional Estimators

Let U ={uy,u,,...,uy} be a population of N units. For simplicity, we denote
the i™ unit by its label i, so the set of N population units is written as
U ={1..1,..,N} with study values {y;,Y,,....yn}, respectively. Divide U
into 2 disjoint subsets, C and C according to the y—values. Let C be the set

of M units satisfying a condition and C the set of N —M units not satisfying
the condition. It is assumed that a unit satisfies the condition if it has the value
of a variable y greater than or equal to a constant c. We can write

C ={ij,iy,...iy} and C ={iyy.1.ims2,iy} Where U=CuC and

CnC=@.

Consider inverse simple random sampling with replacement from a
population of size N when the sampling continues until a prespecified number
m of units from the set C are obtained in the sample of size n. This sample
can be divided into 2 disjoint subsets, the first is of m units from C denoted

by sc and the other of n—m units from C denoted by sz and s=sc Usg
where sc Nsg =& . In this case, n is a random variable with negative

binomial distribution (Lan, 1999).
Let y; be the value of the study variable y from unit i, ieU, and let

Ty = Zieu y; be the total of this study variable. Greco and Naddeo (2007)
gave an unbiased estimator of T, as

Tyon = NIPYc +(1-P) ¥l (1)

where P = (m-=1)/(n-1) is an unbiased estimator of the proportion of units in
the set C, V¢ = m‘lziesc Vi, Ve =(n- m)_lzi656 Yi-
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The variance of the estimator in (1) is

2
(ox Uy

2
Ye £, (P?)+—CE [PL-P)] (2

V(Tyen) =N [(Ye - Y2)?Va(P)+ m m—1

where (Y, af,c) and (Y=, 056) are the means and the variances of the study

variable in the set C and C, respectively. E, (), V,(-) are expectation and
variance with respect to the distribution of n and V (:) is variance with respect

to the sampling design. They also gave an unbiased estimator of Vﬂ:y,c;N) as

Aoa 2 2

. o LPA-P) Sh s Sy o m-l
Ve =N?[(e - V) =2+ SR+ [P —RI] ()
where P, =[(m-1)(m-2)]/[(n-1)(n-2)] and s;_, sj_ are the unbiased

sample variances of the study variable in the sets C and C.

For given n, the selection procedure under inverse sampling is the same as
the selection procedure under stratified sampling with 2 strata where m and
n—m are selected from the first and the second stratum. The sample results in

the two groups are independent (Greco and Naddeo, 2007). Let Ty = Ziec Vi
be the total of the study variable y in the set C. An unbiased estimator of Tye
IS given by the first part of expression in (1) with variance

O

2
e £ (P?)] (4)
m

) St
V(Tye o) = N2[YEVL(P) +

An unbiased estimator of V(T ,__ ) is
C,GN

Aoa 2
. L, PU-P) S ~
V(fy o) = N2 [52 PE 2 e ] ®)
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3 Model Assisted Estimators of the Population Totals

In the situation that we use the auxiliary value to improve the precision of
an estimator. Suppose that (x;,y;), i€ s is observed where y; is the value of

study variable of unit i and x; is auxiliary value. The set {(x;, y;), i € Sc} and
{(X;,Yj), 1 € sz} associated with m units satisfy the condition and n—m units
not satisfy the condition, respectively. From a finite population of size N,
assume that y; = Sy + f1% +¢i, E(g)=0, V(gi)zcy2 and Cov(gj,e;)=0.
Applying an estimator of g of Sérndal, et. al (1992), we can estimate S
using the sample data, that is

<

. JZiesc(xi - %)% — Ve)

[m]Ziesc (Xi B )_(C)Z +( n : m JZieSC (Xi - XCT)Z

(sziesc (% = %)Y - vm(“ -
b, = (6)

Z| s
< 3

where M =NP is an unbiased estimator of M, Xczm‘lzies Xi s
C

Xz =(n— m)‘lz . X;. A model assisted estimator of the population total is
IeSC
given by

~

Ty = M[¥c +by(X =% )]+ (N = M)[¥g +by(X - %c)] M
where X =N _1ZieU X; is the population mean of auxiliary variable x;, i eU.

Theorem 1. A model assisted estimator in equation (7) is biased.

Proof. E(T,)=E,E[T, |n]

= E;{E[(M ¢ +(N - M)¥c)In]-E[b;(M X + (N —M)Xg —T,) | n]}

= E[MY + (N —M)Yg]- Eq[E[by(MXc +(N —M)%g) | n]- E(BTy) [ n]
=M Yg +(N =Mz ~{E[B(M % + (N - M)%)]- E,E(by [m)T, ]}

=T, ~{E[b(M % + (N = M)%s)] - E(b) E,[E(M % + (N - M)%) | n]}
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=T, —Cov(b,,T,) where T, = 2. X and Te=MXc +(N-M)%s.
Bias of T, is B(T,) = E(T,) - T, =—Cov(by, Ty).
where E(-) is expectation with respect to the sampling design.

Since the properties of a model assisted estimator with respect to the
sampling design usually cannot be studied exactly, because of the complex
form (Sé&rndal, et. al, 1992 : 235). Thus an approximated technique is used to

study the properties.
Theorem 2. An estimator in equation (7) is approximately
Ty =M ¥¢ + (N = M)Yg - Bj[(M % + (N = M)Xg) - NX]
+[(Ye =B X¢) = (Vg =B Xg)I(M - M) (8)
with MSE(T,) =V (T,)

M 2 m+1 _ «
- (oF, ~ ot )+ o TN+ (B —E NG, )

Proof. For given n, from Taylor linearization technique,
Ty =M[¥c +b(X = %)+ (N = M)[¥g +by (X - Xg)]
=M Ve +(N = M)z +BINX — (M Xc + (N = M) %s)]
=h(Yc, Ve b, 70’)_(6"\7')

Thus 'i:y is nonlinear function of the estimators. From Taylor linearization

technique, we approximate this function by a linear function. The partial
derivatives with respect to the estimators are needed and we evaluate these
partial derivatives at the expected value point. The estimator in (7) becomes

Ty *M ¥c + (N =M)¥s —B[(M % + (N - M) %g) - NX]
+[(Ye = BXc) - (g — BX)I(M —M)

~*

=Ty.
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Consider E(T,)=E,[E(T, |n)]
=E {MYe + (N - M)Vé - B [((MX¢ +(N - M))Té)— NX]
+[(Ye = BiXc) = (g ~ BiX)I(M - M)}
:Ty.
Thus, 'Fy* is an unbiased estimator of T, . To find the variance of T~; , consider
Ty =M ¥¢ +(N = M)¥g - B[(M % + (N = M) %g) = NX]
+[(Ye =B Xc) = (g —BiX)I(M — M)

) e, i+ Ec ~EIM-M)  (10)

= NB X + (%)ZieSC E; + (

where E =y, -BxX , Ec=M7Y _E, Eg=(N-M)"Y _E.

V(T,)=E VT, |MI+V,[ECT, |n)]

2

OE 1
= MZTC+(N -M)?cE_E, (

n—-m

)+ (Ec — Eg) Vo (M). (11)

)~ mM (N = M) + MN

I 1
Substituting E
n(n—m m2(N —M)?

, equation (11) becomes

~s M2 m+1 _ -
V()= TR o ) e MGl (BN, )  (12)

where o =M~y (i -Ec)?, aéé =(N-M)*> (E-Eg)”
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Thus, an estimator of V(i:;) in (12) is in the form

V()= (2 -2 )M (

€c m

m-2 +S§7 mleN
n-2 ' m

2 2 - 5
— = \2 SEC Seé M(N_M)
+] (6 —85)" ——= - 13
[ c) m n—m:I n—2 13)
where ¢ =y; —bXj, & :m‘lzieSC &, _5=(n—m)_lzieséeif

Sgc =(m —1)_12iesC (& - éc)z, 555 =(n-m —1)‘12iesé (& — GTC—)Z.
A model assisted estimator of the population total in the set C is given by
Ty =M Ye +By[NX — (M%: + (N — M)%5)] (14)

Applying theorem 2, the mean squared error of the total in equation (14) is
approximately

2
MSE(T,, )~ (o, ~BPo?, )+ BfoZ, (2N
+[Ve = Bi(X¢ = X )Vo (M) (15)

where gfé =(N - M)_lzieé(xi - )TC—:)2 . An estimator of MSE(T~yC) is

oy 2 2.2 NM m-2 22(m+1)A
MSE(TyC)_(seC— sxc)—( j+ Sk MN

m\n=2 m?
2 2 2
o by w2 e 28k 2 Sx
+{I5e ~bi(%c el b
+ 2y cov(Xc, Ve ) } w (16)
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where s;_=(m —1)_12iesc (% —%c)?, sfé =(n-m _1)_1Ziesc— (X —X=)?,

cov(Xc, Yo ) =[m(m-DI X, o (% —Xc)(¥i - Ye)-

4 Comparison of Estimators

Since the precision of model assisted estimators and the estimators obtained
from Greco and Naddeo (2007) cannot be compared directly from the
expressions of the variances and mean squared errors, the comparison is carried
out by simulation. The simulation is based on repeated sampling from a
generated finite population of size 10,000 from the model Y; =10+ 0.3X; + ¢;

where ¢; ~ N(0,1) and X has normal distribution. The population values of
(X;,y;) are generated with linear relationship between the auxiliary X and the

study variable Y with the correlation (p) 0.1, 0.3, 0.5, 0.7 and 0.9. The

population proportion of units in the set C in this simulation is set to be 0.01,
0.05, and 0.2. The number m of units satisfying the condition in the sample is
equals to 5, 7 and 17. For each situation, the L samples are drawn. For a sample

| we calculate the total estimates, &, ,1=1,...,.L and also the average of the

~ L A
total estimates, 0:L‘126’|. The variance estimate is obtained from
1=1

A~ ~ L ~ ~

V(0)=(L-1)""Y.(6 - 0)* The mean squared error estimate is given by
=

MSE(8) =V () +[Bias(8)]> where Bias(d)=6 —6. In this study, we let

L =1,000 for each situation. We compute the mean squared errors of the two

model assisted estimators and compare with the variance estimates of the
unbiased estimators given by Greco and Naddeo (2007). Further more, the
average sample size and relative efficiency is also obtained. The results are
shown in Table 1 and Table 2.
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Table 1. Average sample size (m), variance estimates of the unbiased estimators (v (T, ;\))

mean squared error estimates of model assisted estimator (MéEﬁy)) and
relative efficiencies (MéE(fy)/V(fy,eN)) .

P p m ﬁ V(Tyen) | MSE(Ty) | MSEC,)
«10% «10% V(Tyen)
1 .01 5 594 18.67 18.59 0.995
7 786 13.26 13.20 0.995
17 1,808 5.71 5.69 0.996
.05 5 119 104.11 104.85 1.007
7 161 72.35 70.97 0.981
17 363 26.06 25.92 0.994
2 5 30 371.95 385.62 1.037
7 40 302.80 316.82 1.046
17 90 113.97 113.06 0.992
3 .01 5 579 21.45 20.01 0.933
7 819 12.82 11.89 0.928
17 1,790 5.98 5.37 0.898
.05 5 120 107.71 97.58 0.906
7 158 82.32 77.04 0.936
17 358 29.15 26.67 0.915
2 5 30 391.98 384.31 0.980
7 40 264.25 249.31 0.943
17 90 122.40 116.36 0.951
5 .01 5 598 20.71 15.66 0.756
7 794 15.20 11.80 0.776
17 1,799 5.65 4.38 0.774
.05 5 120 111.23 83.92 0.755
7 162 69.35 54.70 0.789
17 364 30.87 22.64 0.733
2 5 30 403.03 354.13 0.879
7 40 306.88 252.92 0.824
17 90 125.54 100.54 0.801
T .01 5 585 22.21 10.69 0.481
7 785 15.59 7.91 0.507
17 1,808 5.98 2.94 0.491
.05 5 119 101.34 54.14 0.534
7 160 69.60 38.16 0.548
17 361 30.71 15.96 0.520
2 5 29 453.20 269.52 0.595
7 40 294.18 180.60 0.614
17 89 116.34 64.05 0.551
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Table 1. Continued

ol el m | 7 | Ve | MER) | MED
x10% x10* \Y (Ty,GN )

9 | .01 5 616 19.58 3.66 0.187
7 794 14.06 291 0.207

17 1,790 6.16 1.12 0.182

.05 5 122 107.39 19.81 0.184

7 164 77.25 12.93 0.167

17 356 28.17 5.55 0.197

2 5 30 395.53 96.00 0.243

7 41 27411 59.93 0.219

17 90 116.87 25.08 0.215

From Table 1 it is seen that the average sample size increase if we increases
the values of m. However, if the population proportion increases, smaller
average sample sizes are obtained. Considering the variance estimates and the
mean squared errors estimates, we see that if the population proportion
increases the variance estimates and the mean squared errors also increase. If
the correlation between X and Y is less than 0.5 the variances of the unbiased
estimators and the mean squared errors of the model assisted estimators are not
much different for any level of proportion and any a number m in the samples.
If the correlation between X and Y is greater than or equal 0.5 the model
assisted estimates have smaller mean squared errors than the variance estimates
of unbiased estimates for any level of proportion and the number m.

Table 2. Variance estimates of the unbiased estimator (v (fy o)) Mmean squared error
(of)

estimates of model assisted estimator(|\/|§|5(fy )) and relative efficiencies
Cc

(MSE(Ty )NV (Ty. on))-

ol p|m V(Tyean) | MSE(T,) | MSE(y)
x10° x10° V(Ty.on)

d1].01]|5 73.32 73.10 0.997
7 51.17 51.33 1.003

17 21.41 2151 1.005

.05 1| 5 2,078.71 2,081.28 1.001

7 1,321.25 1,316.45 0.996

17 466.72 467.36 1.001

2 5 | 194,105.58 | 193,979.02 0.999

7 | 175,150.20 | 175,882.51 1.004

17 | 55,076.89 | 55,048.82 0.999
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Table 2. Continued

P p m v(fyc GN) MSE (TNyC ) 'Y'SF (Ty)
x10* x10°* V(Ty. en)

3 |1.00]|5 112.45 113.92 1.013
7 50.59 51.37 1.016

17 24.09 24.21 1.005

05| 5 1,989.00 1,955.78 0.983

7 1,414.49 1,405.65 0.994

17 519.78 512.01 0.985

2 5 | 19,722.36 | 19,655.03 0.997

7 | 12,938.90 | 12,843.36 0.993

17 | 5,794.40 5,744.83 0.991

5 1.00]| 5 74.00 73.05 0.987
7 60.86 59.93 0.985

17 22.74 22.20 0.976

05| 5 1,803.18 1,721.48 0.955

7 1,007.37 977.27 0.970

17 478.00 456.60 0.955

2 5 | 21,462.76 | 21,000.72 0.978

7 | 16,188.11 | 15,777.30 0.975

17 | 5,697.40 5,542.45 0.973

7 1.01]|5 106.80 103.24 0.967
7 74.95 73.79 0.985

17 22.14 21.57 0.974

05| 5 1,947.51 1,791.84 0.920

7 1,393.06 1,301.17 0.934

17 513.18 475.73 0.927

2 5 | 22,186.40 | 20,942.50 0.944

7 | 15,616.10 | 14,795.45 0.947

17 | 6,211.88 5,853.69 0.942

9 | 01| 5 89.26 84.17 0.943
7 57.85 55.45 0.959

17 21.93 20.60 0.939

05| 5 2,098.27 1,762.31 0.840

7 1,266.06 1,043.25 0.824

17 518.34 454,00 0.876

2 5 | 21,376.17 | 18,806.14 0.880

7 | 14,671.47 | 12,866.34 0.877

17 | 5,911.62 5,218.90 0.883




Proceedings of the 6th IMT-GT Conference on Mathematics, Statistics and its Applications (ICMSA2010)
Universiti Tunku Abdul Rahman, Kuala Lumpur, Malaysia 5 76

From the results in Table 2, we compare the precision of the total estimates

of units in the set C . We see that the variance estimates and the mean squared
error estimates increase if the population proportion increase. When p <0.7

the variance estimates of the unbiased estimates and the mean squared error
estimates of the model assisted estimates are not quite different for any values
of population proportion and the number m. At very high correlation between X
and Y (p =0.9) the model assisted estimates have smaller mean squared errors

than the unbiased estimates especially when the population proportion is
greater than or equal 0.05 but they do not depend on the number m.

References

=

Christman, M.C., Lan, F.: Inverse adaptive cluster sampling. Biometrics. 57, 1096-1105 (2001).
Greco, L., Naddeo, S.: Inverse sampling with unequal selection probabilities. Communications in
Statistics - Theory and Methods. 36, 1039-1048 (2007).

Haldane, J. B. S.: On a method of estimating frequencies. Biometrika. 33, 222-225 (1945).

Lan, F.: Sequential adaptive sampling designs to estimate abundance in rare populations. Doctorial
Dissertation. The American University (1999).

. Sdrndal, C.E., Swensson, B., Wretman, J.: Model assisted survey sampling. Springer-Verlag. New

York (1992).

Salehi, M.M., Seber, G.A.F.: A New proof of Murthy’s estimator with applies to sequential sampling.
Austral. NZ J. Statist. 43, 281-286 (2001).

Salehi, M.M., Seber, G.A.F.: A general inverse sampling scheme and its application to adaptive
cluster sampling. Austral. NZ J. Statist. 46, 483-494 (2004).



