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Abstract.  In this paper, we proposed two model assisted estimators of the 
population total and the total in a given set in inverse random sampling with 
replacement. The precision of the proposed estimators are compared with the 
estimators given by Greco and Naddeo (2007). The simulation results show that 
the precision of the two proposed estimators and the Greco-Naddeo estimators 
are not much different at low correlation between the study (Y) and the auxiliary 
(X) variables.  With high correlation between the variables, the two proposed 
estimators are more precise than the Greco-Naddeo estimators. 
 

 
1 Introduction 

 
Inverse sampling is a method of sampling which requires continued drawing 

of units until certain specified conditions dependent on the results of those 
drawings have been fulfilled. The population may be divided into 2 disjoint 
subgroups, a group satisfying some condition, denoted by C  and another group 
not satisfying the condition,  denoted by .C  We do not know which set a unit 
belongs to until the unit is sampled and observed. For this situation, we may 
use inverse sampling design which requires continue drawing until a fixed 
number of units in the set C are obtained in the sample.  

Recently, many papers on inverse sampling appeared in various statistical 
journals. Christman and Lan (2001) considered inverse simple random 
sampling with and without replacement. They gave an unbiased estimator of 
the population total and its variance for each case of sampling. Salehi and 
Seber (2001, 2004) also considered inverse simple random sampling without 
replacement. They gave an unbiased estimator of the population total and its 
variance based on the Murthy’s estimator. Greco and Naddeo (2007) 
considered inverse sampling with replacement when the population units were 
drawn with unequal probabilities. They derived an unbiased estimator of the 
population total, its variance and an unbiased variance estimator under the 
design. For inverse simple random sampling, they also gave an estimator of the 
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population total and its variance which was equivalent to the expression  given 
by Christman and Lan (2001). 

In some situations, estimators of certain parameters can be derived from 
information on auxiliary variable. ,rndalaS && et. al (1992) proposed model 
assisted estimators to improve its precision. In this study, we used model 
assisted approach to improve the traditional estimators under the inverse 
random sampling with replacement. 

 
2 Traditional Estimators 

 
Let },...,,{ 21 NuuuU =  be a population of N units. For simplicity, we denote 

the thi  unit by its label i, so the set of N population units is written as 
}...,,,...,1{ NiU =  with study values ,},...,,{ 21 Nyyy  respectively. Divide U  

into 2 disjoint subsets, C  and C  according to the −y values. Let C  be the set 
of M units satisfying a condition and  C  the set of MN −  units not satisfying 
the condition. It is assumed that a unit satisfies the condition if it has the value 
of a variable y greater than or equal to a constant c. We can write 

},...,,{ 21 MiiiC =  and },...,,{ 21 NMM iiiC ++=  where CCU ∪=  and 
.∅=∩CC  

Consider inverse simple random sampling with replacement from a 
population of size N when the sampling continues until a prespecified number 
m  of units from the set C are obtained in the sample of size .n  This sample 
can be divided into 2 disjoint subsets, the first is of m  units from C  denoted 
by Cs  and the other of mn −  units from C  denoted by  Cs  and CC sss ∪=  
where ∅=∩ CC ss . In this case, n is a random variable with negative 
binomial distribution (Lan, 1999). 
 Let iy  be the value of the study variable y from unit i, ,Ui∈  and let 

∑∈
= Ui iy yT  be the total of this study variable. Greco and Naddeo (2007) 

gave an unbiased estimator of  yT  as 
 
  ])ˆ1(ˆ[ˆ

, CCGNy yPyPNT −+=  (1) 
 
where )1()1(ˆ −−= nmP  is an unbiased estimator of the proportion of units in 

the set C, ,1∑∈
−=

Csi iC ymy .)( 1∑∈
−−=

Csi iC ymny   
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The variance of the estimator in (1) is  
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where ),( 2

CyCY σ  and ),( 2
CyCY σ  are the means and the variances of the study 

variable in the set C  and ,C  respectively. )(⋅nE , )(⋅nV  are expectation and 
variance with respect to the distribution of n and )(⋅V  is variance with respect 
to the sampling design. They also gave an unbiased estimator of )ˆ( ,GNyTV  as  
 

 2
, )ˆ(ˆ NTV GNy = [ ]ˆ

2
1ˆ[

1
ˆ

2
)ˆ1(ˆ

)( 2

2

2

2
2 P

m
mP

m
s

P
m

s
n

PPyy CC yy
CC −

−
−

−
++

−
−

− ] (3) 

 
where ])2)(1[()]2)(1([2̂ −−−−= nnmmP  and  ,2

Cys 2
Cys are the unbiased 

sample variances of the study variable in the sets C  and .C  
 
 For given n, the selection procedure under inverse sampling is the same as 
the selection procedure under stratified sampling with 2 strata where m  and 

mn −  are selected from the first and the second stratum. The sample results in 
the two groups are independent (Greco and Naddeo, 2007). Let ∑∈

= Ci iy yT
C

 

be the total of the study variable y in the set .C  An unbiased estimator of 
CyT  

is given by the first part of expression in (1) with variance  
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An unbiased estimator of )ˆ(

,GNCyTV  is 
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3 Model Assisted Estimators of the Population Totals 
 

In the situation that we use the auxiliary value to improve the precision of 
an estimator. Suppose that siyx ii ∈,),(  is observed where iy  is the value of 
study variable of unit i and ix  is auxiliary value. The set }),,{( Cii siyx ∈  and 

}),,{( Cii siyx ∈  associated with m  units satisfy the condition and  mn −  units 
not satisfy the condition, respectively. From a finite population of size N, 
assume that ,10 iii xy εββ ++=  ,0)( =iE ε  2)( σε =iV  and .0),( =εε jiCov  
Applying an estimator of 1β of ,rndalaS && et. al (1992), we can  estimate 1β  
using the sample data, that is 
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where PNM ˆˆ = is an unbiased estimator of M, ,1∑∈

−=
Csi iC xmx   

.)( 1∑∈
−−=

Csi iC xmnx  A model assisted estimator of the population total is 

given by 
 
 )]([)ˆ()]([ˆ~

11 CCCCy xXbyMNxXbyMT −+−+−+=  (7) 
 
where ∑∈

−= Ui ixNX 1  is the population mean of auxiliary variable ., Uixi ∈  
 
Theorem 1.  A model assisted estimator in equation (7) is biased. 
 
Proof. ]|~[)~( nTEETE yny =  

]}|))ˆ(ˆ([]|))ˆ(ˆ[({ 1 nTxMNxMbEnyMNyMEE xCCCCn −−+−−+=  

]|)(]|))ˆ(ˆ([[])ˆ(ˆ[ 11 nTbEnxMNxMbEEYMNYME xCCnCCn −−+−−+=  

}])|()])ˆ(ˆ([{)( 11 xnCCCC TnbEExMNxMbEYMNYM −−+−−+=  

}]|))ˆ(ˆ([)()])ˆ(ˆ([{ 11 nxMNxMEEbExMNxMbET CCnCCy −+−−+−=  
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)ˆ,( 1 xy TbCovT −=   where  ∑∈
= Ui ix xT and .)ˆ(ˆˆ

CCx xMNxMT −+=  

Bias of yT~  is ).ˆ,()~()~( 1 xyyy TbCovTTETB −=−=  
where )(⋅E  is expectation with respect to the sampling design. 
 
 Since the properties of a model assisted estimator with respect to the 
sampling design usually cannot be studied exactly, because of the complex 
form ( ,rndalaS && et. al, 1992 : 235). Thus an approximated technique is used to 
study the properties. 
 
Theorem 2.  An estimator in equation (7) is approximately 
 
 ]))([()(~

1
* XNxMNxMByMNyMT CCCCy −−+−−+=  

  )ˆ)](()[( 11 MMXBYXBY CCCC −−−−+  (8) 
 
with )~()~( *

yy TVTMSE ≈  
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M
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+−= σσσ  (9) 

 
Proof. For given n, from Taylor linearization technique, 
 
 )]([)ˆ()]([ˆ~

11 CCCCy xXbyMNxXbyMT −+−+−+=  

   )])ˆ(ˆ([)ˆ(ˆ
1 CCCC xMNxMXNbyMNyM −+−+−+=  

   )ˆ,,,,,( 1 Mxxbyyh CCCC=  

Thus yT~  is nonlinear function of the estimators. From Taylor linearization 
technique, we approximate this function by a linear function. The partial 
derivatives with respect to the estimators are needed and we evaluate these 
partial derivatives at the expected value point. The estimator in (7) becomes 
  
 ]))([()(~

1 XNxMNxMByMNyMT CCCCy −−+−−+≈  

  )ˆ)](()[( 11 MMXBYXBY CCCC −−−−+  

 .~*
yT=  
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Consider  )]|~([)~( ** nTEETE yny =  

  ]))([()({ 1 XNXMNXMBYMNYME CCCCn −−+−−+=  

   })ˆ)](()[( 11 MMXBYXBY CCCC −−−−+  

  .yT=  

Thus, *~
yT  is an unbiased estimator of  yT . To find the variance of ,~*

yT  consider 

]))([()(~
1

* XNxMNxMByMNyMT CCCCy −−+−−+=  

 )ˆ)](()[( 11 MMXBYXBY CCCC −−−−+  

 )ˆ]([)()(1 MMEEE
mn
MNE

m
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−
−

++= ∑∑ ∈∈
 (10) 

 
where iii xByE 1−=  ,  ,1∑∈

−= Ci iC EME   .)( 1∑∈
−−= Ci iC EMNE  
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Substituting nE (
mn −

1 ) 22 )(
)(
MNm
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≈ ,  equation (11) becomes 
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Thus, an estimator of )~( *
yTV  in (12) is in the form 
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where  iii xbye 1−= ,  ,1∑∈

−=
Csi iC eme  ,)( 1∑∈

−−=
Csi iC emne  

 ,)()1( 212 ∑∈
− −−=

CC si Cie eems  .)()1( 212 ∑∈
− −−−=

CC si Cie eemns  

 
 A model assisted estimator of the population total in the set C is given by 
 
  )])ˆ(ˆ([ˆ~

1 CCCy xMNxMXNbyMT
C

−+−+=  (14) 
 
Applying theorem 2, the mean squared error of the total in equation (14) is 
approximately 
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where  ,)()1( 212 ∑∈
− −−=

CC si Cix xxms   ,)()1( 212 ∑∈
− −−−=

CC si Cix xxmns  

.))(()]1([),cov( 1∑∈
− −−−=

Csi CiCiCC yyxxmmyx  

 
4 Comparison of Estimators 
 
 Since the precision of model assisted estimators and the estimators obtained 
from Greco and Naddeo (2007) cannot be compared directly from the 
expressions of the variances and mean squared errors, the comparison is carried 
out by simulation. The simulation is based on repeated sampling from a 
generated finite  population of size 10,000 from the model iii XY ε++= 3.010  
where )1,0(~ Niε  and X has normal distribution. The population values of 

),( ii yx  are generated with linear relationship between the auxiliary X and the 
study variable Y with the correlation )(ρ   0.1, 0.3, 0.5, 0.7 and 0.9. The 
population proportion of units in the set C  in this simulation is set to be 0.01, 
0.05, and 0.2. The number m of units satisfying the condition in the sample is 
equals to 5, 7 and 17. For each situation, the L samples are drawn. For a sample 
l we calculate the total estimates, Lll ...,,1,ˆ =θ  and also  the average of the 

total estimates, .ˆˆ
1

1∑
=

−=
L

l
lL θθ  The variance estimate is obtained from 

.)ˆˆ()1()ˆ(ˆ
1

21∑
=

− −−=
L

l
lLV θθθ  The mean squared error estimate is given by 

2)]ˆ(ˆ[)ˆ(ˆ)ˆ(ˆ θθθ asiBVESM += where .ˆ)ˆ(ˆ θθθ −=asiB In this study, we let 
000,1=L  for each situation. We compute the mean squared errors of  the two 

model assisted estimators and compare with the variance estimates of the 
unbiased estimators given by Greco and Naddeo (2007). Further more, the 
average sample size and relative efficiency is also obtained. The results are 
shown in Table 1 and Table 2.  
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Table 1.  Average sample size )(n , variance estimates of the unbiased estimators ))ˆ(ˆ( ,GNyTV , 
mean squared error estimates of model assisted estimator ))~(ˆ( yTESM and  
relative efficiencies ))ˆ(ˆ)~(ˆ( ,GNyy TVTESM . 

 

ρ  P m n  )ˆ(ˆ
,GNyTV  

410×  
)~(ˆ

yTESM
410×  )ˆ(ˆ

)~(ˆ

,GNy

y

TV

TESM  

.1 .01 5 594 18.67 18.59 0.995 
  7 786 13.26 13.20 0.995 
  17 1,808 5.71 5.69 0.996 
 .05 5 119 104.11 104.85 1.007 
  7 161 72.35 70.97 0.981 
  17 363 26.06 25.92 0.994 
 .2 5 30 371.95 385.62 1.037 
  7 40 302.80 316.82 1.046 
  17 90 113.97 113.06 0.992 

.3 .01 5 579 21.45 20.01 0.933 
  7 819 12.82 11.89 0.928 
  17 1,790 5.98 5.37 0.898 
 .05 5 120 107.71 97.58 0.906 
  7 158 82.32 77.04 0.936 
  17 358 29.15 26.67 0.915 
 .2 5 30 391.98 384.31 0.980 
  7 40 264.25 249.31 0.943 
  17 90 122.40 116.36 0.951 

.5 .01 5 598 20.71 15.66 0.756 
  7 794 15.20 11.80 0.776 
  17 1,799 5.65 4.38 0.774 
 .05 5 120 111.23 83.92 0.755 
  7 162 69.35 54.70 0.789 
  17 364 30.87 22.64 0.733 
 .2 5 30 403.03 354.13 0.879 
  7 40 306.88 252.92 0.824 
  17 90 125.54 100.54 0.801 

.7 .01 5 585 22.21 10.69 0.481 
  7 785 15.59 7.91 0.507 
  17 1,808 5.98 2.94 0.491 
 .05 5 119 101.34 54.14 0.534 
  7 160 69.60 38.16 0.548 
  17 361 30.71 15.96 0.520 
 .2 5 29 453.20 269.52 0.595 
  7 40 294.18 180.60 0.614 
  17 89 116.34 64.05 0.551 
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Table 1.  Continued 
 

ρ  P m n  )ˆ(ˆ
,GNyTV  

410×  

)~(ˆ
yTESM

410×  )ˆ(ˆ
)~(ˆ

,GNy

y

TV

TESM  

.9 .01 5 616 19.58 3.66 0.187 
  7 794 14.06 2.91 0.207 
  17 1,790 6.16 1.12 0.182 
 .05 5 122 107.39 19.81 0.184 
  7 164 77.25 12.93 0.167 
  17 356 28.17 5.55 0.197 
 .2 5 30 395.53 96.00 0.243 
  7 41 274.11 59.93 0.219 
  17 90 116.87 25.08 0.215 

 
From Table 1 it is seen that the average sample size increase if we increases 

the values of m. However, if the population proportion increases, smaller 
average sample sizes are obtained. Considering the variance estimates and the 
mean squared errors estimates, we see that if the population proportion 
increases the variance estimates and the mean squared errors also increase. If 
the correlation between X and Y is less than 0.5 the variances of the unbiased 
estimators and the mean squared errors of the model assisted estimators are not 
much different for any level of proportion and any a number m in the samples. 
If the correlation between X and Y is greater than or equal 0.5 the model 
assisted estimates have smaller mean squared errors than the variance estimates 
of unbiased estimates for any level of proportion and the number m.  
 

Table 2. Variance estimates of the unbiased estimator ))ˆ(ˆ( ,GNyC
TV , mean squared error 

  estimates of model assisted estimator ))~(ˆ(
CyTESM  and relative efficiencies 

  ))ˆ(ˆ)~(ˆ( ,GNyy CC
TVTESM . 

 
ρ  P m 

)ˆ(ˆ
,GNyC

TV  

410×  

)~(ˆ
CyTESM

410×  )ˆ(ˆ
)~(ˆ

,GNy

y

C

C

TV

TESM  

.1 .01 5 73.32 73.10 0.997 
  7 51.17 51.33 1.003 
  17 21.41 21.51 1.005 
 .05 5 2,078.71 2,081.28 1.001 
  7 1,321.25 1,316.45 0.996 
  17 466.72 467.36 1.001 
 .2 5 194,105.58 193,979.02 0.999 
  7 175,150.20 175,882.51 1.004 
  17 55,076.89 55,048.82 0.999 
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Table 2.  Continued 

 
ρ  P m 

)ˆ(ˆ
,GNyC

TV  

410×  
)~(ˆ

CyTESM
410×  )ˆ(ˆ

)~(ˆ

,GNy

y

C

C

TV

TESM  

.3 .01 5 112.45 113.92 1.013 
  7 50.59 51.37 1.016 
  17 24.09 24.21 1.005 
 .05 5 1,989.00 1,955.78 0.983 
  7 1,414.49 1,405.65 0.994 
  17 519.78 512.01 0.985 
 .2 5 19,722.36 19,655.03 0.997 
  7 12,938.90 12,843.36 0.993 
  17 5,794.40 5,744.83 0.991 

.5 .01 5 74.00 73.05 0.987 
  7 60.86 59.93 0.985 
  17 22.74 22.20 0.976 
 .05 5 1,803.18 1,721.48 0.955 
  7 1,007.37 977.27 0.970 
  17 478.00 456.60 0.955 
 .2 5 21,462.76 21,000.72 0.978 
  7 16,188.11 15,777.30 0.975 
  17 5,697.40 5,542.45 0.973 

.7 .01 5 106.80 103.24 0.967 
  7 74.95 73.79 0.985 
  17 22.14 21.57 0.974 
 .05 5 1,947.51 1,791.84 0.920 
  7 1,393.06 1,301.17 0.934 
  17 513.18 475.73 0.927 
 .2 5 22,186.40 20,942.50 0.944 
  7 15,616.10 14,795.45 0.947 
  17 6,211.88 5,853.69 0.942 

.9 .01 5 89.26 84.17 0.943 
  7 57.85 55.45 0.959 
  17 21.93 20.60 0.939 
 .05 5 2,098.27 1,762.31 0.840 
  7 1,266.06 1,043.25 0.824 
  17 518.34 454.00 0.876 
 .2 5 21,376.17 18,806.14 0.880 
  7 14,671.47 12,866.34 0.877 
  17 5,911.62 5,218.90 0.883 

 
 
 

Proceedings of the 6th IMT-GT Conference on Mathematics, Statistics and its Applications (ICMSA2010)
Universiti Tunku Abdul Rahman, Kuala Lumpur, Malaysia 575



From the results in Table 2, we compare the precision of the total estimates 
of units in the set C . We see that the variance estimates and the mean squared 
error estimates increase if the population proportion increase. When 7.0≤ρ  
the variance estimates of the unbiased estimates and the mean squared error 
estimates of the model assisted estimates are not quite different for any values 
of population proportion and the number m. At very high correlation between X 
and Y )9.0( =ρ  the model assisted estimates have smaller mean squared errors 
than the unbiased estimates especially when the population proportion is 
greater than or equal 0.05 but they do not depend on the number m. 
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