

แบบฝึกหัดเรื่อง ตรีโกณมิติ
ชื่อ-นามสกุล \qquad
เลขประจำตัว \qquad

1. จงหาค่าของ
1.1)

$$
\sin \frac{\pi}{12}=\sin \left(\frac{\pi}{3}-\frac{\pi}{4}\right)
$$

$$
=\sin \frac{\pi}{3} \cos \frac{\pi}{4}-\cos \frac{\pi}{3} \sin \frac{\pi}{4}
$$

$$
=\frac{\sqrt{3}}{2} \frac{\sqrt{2}}{2}-\frac{1}{2} \frac{\sqrt{2}}{2}
$$

$$
=\frac{\sqrt{6}-\sqrt{2}}{4}
$$

1.3)

$$
\begin{aligned}
\tan 75^{\circ} & =\tan \left(45^{\circ}+30^{\circ}\right) \\
& =\frac{\tan 45^{\circ}+\tan 30^{\circ}}{1-\tan 45^{\circ} \tan 30^{\circ}} \\
& =\frac{1+\frac{1}{\sqrt{3}}}{1-1\left(\frac{1}{3}\right)}=
\end{aligned}
$$

1.5)

$$
\sin \frac{2 \pi}{12}=\sin \left(\frac{5 \pi}{3}+\frac{\pi}{4}\right)
$$

$$
=\sin \frac{5 \pi}{3} \cos \frac{\pi}{4}+\cos \frac{\pi}{3} \sin \frac{\pi}{4}
$$

$$
=-\frac{\sqrt{3}}{2} \frac{\sqrt{2}}{2}+\frac{1}{2} \frac{\sqrt{2}}{2}
$$

$$
=\frac{-\sqrt{6}+\sqrt{2}}{4}
$$

$$
\begin{aligned}
& =\sin \left(150+45^{\circ}\right) \\
& =\sin 150^{\circ}\left(\cos 45^{\circ}+\cos 150^{\circ} \sin 45^{\circ}\right. \\
& =\frac{1}{2} \frac{\sqrt{2}}{2}-\frac{\sqrt{3}}{2} \frac{\sqrt{2}}{2} \\
& =\frac{\sqrt{2}}{4}-\frac{\sqrt{3} \sqrt{2}}{4}
\end{aligned}
$$

1.2)

\cos

$$
\left(105^{\circ}\right)=\cos \left(60^{\circ}+45^{\circ}\right)
$$

$$
=\cos 60^{\circ} \cos 45^{\circ}-\sin 60^{\circ} \sin 45^{\circ}
$$

$$
=\frac{1}{2} \frac{\sqrt{2}}{2}-\frac{\sqrt{3}}{2} \frac{\sqrt{2}}{2}
$$

$$
=\frac{\sqrt{2}-\sqrt{6}}{4}
$$

1.4)

$$
\begin{aligned}
& =\cos \left(120^{\circ}+45^{\circ}\right) \\
& =\cos \left(120^{\circ}\right) \cos \left(45^{\circ}\right)-\sin \left(120^{\circ}\right) \sin \left(45^{\circ}\right) \\
& =\left(-\frac{1}{2}\right)\left(\frac{\sqrt{2}}{2}\right)-\left(\frac{\sqrt{3}}{2}\right)\left(\frac{\sqrt{2}}{2}\right) \\
& =-\frac{\sqrt{2}}{4}-\frac{\sqrt{6}}{4}
\end{aligned}
$$

1.6)
$\sec \left(-\frac{\pi}{12}\right)=$

$$
\begin{array}{rl|r}
\cos \frac{\pi}{12} & =\cos \left(\frac{\pi}{3}-\frac{\pi}{4}\right) & \sec \left(-\frac{\pi}{12}\right)=\frac{1}{\cos \left(-\frac{\pi}{12}\right)} \\
& =\cos \frac{\pi}{3} \cos \frac{\pi}{4}+\sin \frac{\pi}{3} \sin \pi & =\frac{1}{\cos \left(\frac{\pi}{12}\right)} \\
& =\frac{1}{2} \frac{\sqrt{2}}{2}+\frac{\sqrt{3}}{2} \frac{\sqrt{2}}{2} & \\
& =\frac{\sqrt{2}+\sqrt{6}}{4} & =\frac{4}{\sqrt{2}+\sqrt{6}}
\end{array}
$$

1.8) $\cot \left(165^{\circ}\right)=$

$$
\begin{aligned}
\tan \left(165^{\circ}\right) & =\frac{\tan \left(120^{\circ}+45^{\circ}\right)}{1-\tan 120^{\circ} \tan 45^{\circ}} \left\lvert\, \begin{array}{l}
\cot 165^{\circ} \\
\\
=\frac{\tan 120^{\circ}+\tan 45^{\circ}}{1-\sqrt{3}} \\
\end{array}=\frac{1+\sqrt{3}+1}{1-(-\sqrt{3})(1)}=1=-2-\sqrt{3}\right.
\end{aligned}
$$

$$
=\quad \frac{1-\sqrt{3}}{1+\sqrt{3}}
$$

2. จงหาค่าของ

$$
\begin{aligned}
& \left..1=2 \operatorname{Sin}\left(15^{\circ}\right) \operatorname{Cos}\left(15^{\circ}\right) \quad .2=\operatorname{Sin}\left(35^{\circ}\right) \operatorname{Cos}\left(5^{\circ}\right)-\operatorname{Cos}\left(35^{\circ}\right) \operatorname{Sin}\left(5^{\circ}\right)\right] \\
& .3=\operatorname{Sin}\left(10^{\circ}\right) \operatorname{Cos}\left(35^{\circ}\right)+\operatorname{Cos}\left(10^{\circ}\right) \operatorname{Sin}\left(35^{\circ}\right) \quad .4=\operatorname{Cos}\left(22.5^{\circ}\right)^{2}-\operatorname{Sin}\left(22.5^{\circ}\right)^{2} \\
& N o l=\left[\begin{array}{cc}
.1=\operatorname{Sin}\left(\frac{\pi}{12}\right) & .2=\operatorname{Cos}\left(105^{\circ}\right) \\
.3=\operatorname{Tan}\left(75^{\circ}\right) & .4=\operatorname{Cos}\left((-165)^{\circ}\right) \\
.5=\operatorname{Sin}\left(\frac{23 \pi}{12}\right) & .6=\operatorname{Sec}\left(-\frac{\pi}{12}\right) \\
.7=\operatorname{Csc}\left(195^{\circ}\right) & .8=\operatorname{Cot}\left(165^{\circ}\right)
\end{array}\right], \operatorname{No} 2=\left[\begin{array}{cc}
.5=2 \operatorname{Cos}\left(\frac{\pi}{12}\right)^{2}-1 & .6=\frac{\operatorname{Tan}\left(\frac{7 \pi}{36}\right)+\operatorname{Tan}\left(\frac{5 \pi}{36}\right)}{1-\operatorname{Tan}\left(\frac{7 \pi}{36}\right) \operatorname{Tan}\left(\frac{5 \pi}{36}\right)} \\
.7=\frac{\operatorname{Tan}\left(\frac{2 \pi}{5}\right)-\operatorname{Tan}\left(\frac{\pi}{15}\right)}{1+\operatorname{Tan}\left(\frac{2 \pi}{5}\right) \operatorname{Tan}\left(\frac{\pi}{15}\right)} & .8=\frac{2 \operatorname{Tan}\left(22.5^{\circ}\right)}{1-\operatorname{Tan}\left(22.5^{\circ}\right)^{2}} \\
.9=1-2 \operatorname{Sin}\left(\frac{\pi}{8}\right)^{2} & .10=\operatorname{Cos}\left(\frac{\pi}{18}\right) \operatorname{Cos}\left(\frac{\pi}{9}\right)-\operatorname{Sin}\left(\frac{\pi}{18}\right) \operatorname{Sin}\left(\frac{\pi}{9}\right)
\end{array}\right]
\end{aligned}
$$

$$
\begin{aligned}
& \text { No } 5=\left[\text { Cond }=\left(\operatorname{Cos}\left(32^{\circ}\right)=0.848\right) \text {, Question }=\operatorname{Sin}\left(16^{\circ}\right)\right], \quad,\left[\begin{array}{c}
M \\
U \\
T
\end{array}\right] \\
& \text { No6 }=\left[\text { Cond }=\left(\operatorname{Cos}\left(54^{\circ}\right)=0.588\right) \text {, Question }=\operatorname{Cos}\left(27^{\circ}\right)\right], \quad,\left[\begin{array}{c}
M \\
U \\
T
\end{array}\right]
\end{aligned}
$$

[^0]\[

$$
\begin{aligned}
& \text { AnsI }=\left[\begin{array}{cc}
. I=\left(\operatorname{Sin}\left(\frac{\pi}{12}\right)=\frac{\sqrt{2} \sqrt{3}}{4}-\frac{\sqrt{2}}{4}\right) & .2=\left(\operatorname{Cos}\left(105^{\circ}\right)=\frac{\sqrt{2}}{4}-\frac{\sqrt{2} \sqrt{3}}{4}\right) \\
.3=\left(\operatorname{Tan}\left(75^{\circ}\right)=2+\sqrt{3}\right) & .4=\left(\operatorname{Cos}\left((-165)^{\circ}\right)=-\frac{\sqrt{2}}{4}-\frac{\sqrt{2} \sqrt{3}}{4}\right) \\
.5=\left(\operatorname{Sin}\left(\frac{23 \pi}{12}\right)=\frac{\sqrt{2}}{4}-\frac{\sqrt{2} \sqrt{3}}{4}\right) & .6=\left(\operatorname{Sec}\left(-\frac{\pi}{12}\right)=-\sqrt{2}+\sqrt{2} \sqrt{3}\right) \\
.7=\left(\operatorname{Csc}\left(195^{\circ}\right)=-\sqrt{2} \sqrt{3}-\sqrt{2}\right) & .8=\left(\operatorname{Cot}\left(165^{\circ}\right)=-2-\sqrt{3}\right)
\end{array}\right],\left[\begin{array}{c}
\frac{:}{:} \\
M \\
a \\
t \\
h \\
@ \\
M \\
U \\
T \\
\frac{:}{:}
\end{array}\right]
\end{aligned}
$$
\]

> Ans $5=\left(\operatorname{Sin}\left(16^{\circ}\right)=(\operatorname{Sqrt}(0.0760)=0.276)\right), \quad$,
> Ans $\sigma=\left(\operatorname{Cos}\left(27^{\circ}\right)=(\operatorname{Sqrt}(0.7940)=0.891)\right), \quad$,

[^0]:

