

แบบฝึกหัดเรื่อง ตรีโกณมิติ

ชื่อ-นามสกุล
เลขประจำตัว \ldots No. 3

1. จงหาค่าของ

2. จงหาค่าของ
2.1) $\cos \left(\frac{\pi}{18}\right) \cos \left(\frac{\pi}{9}\right)-\sin \left(\frac{\pi}{18}\right) \sin \left(\frac{\pi}{9}\right)=\frac{\sqrt{3}}{2}$

คาก

$$
\begin{aligned}
& \cos \left(\frac{\pi}{18}\right) \cos \left(\frac{\pi}{9}\right) \\
& =\cos \left(\frac{\pi}{18}+\frac{\pi}{9}\right) \\
& =\cos \left(\frac{\pi}{6}\right) \\
& =\frac{\sqrt{3}}{2}
\end{aligned}
$$

2.3) $\sin \left(48^{\circ}\right) \cos \left(12^{\circ}\right)+\cos \left(48^{\circ}\right) \sin (1)^{\circ}=\frac{\sqrt{3}}{2}$
mn $\sin \left(48^{\circ}\right) \cos \left(12^{\circ}\right)+\cos \left(48^{\circ}\right) \sin \left(12^{\circ}\right)$

$$
\begin{aligned}
& =\sin \left(48^{\circ}+12^{\circ}\right) \\
& =\sin \left(60^{\circ}\right) \\
& =\frac{\sqrt{3}}{2}
\end{aligned}
$$

2.5)

$$
\frac{\tan \left(50^{\circ}\right)-\tan \left(20^{\circ}\right)}{1+\tan \left(50^{\circ}\right) \tan \left(20^{\circ}\right)}=\frac{\sqrt{3}}{3}
$$

$\operatorname{\Delta in}$

$$
\begin{aligned}
& \frac{\tan \left(50^{\circ}\right)-\tan \left(20^{\circ}\right)}{1+\tan \left(50^{\circ}\right) \tan \left(20^{\circ}\right)} \\
= & \tan \left(50^{\circ}-20^{\circ}\right) \\
= & \tan \left(30^{\circ}\right) \\
= & \frac{\sqrt{3}}{3}
\end{aligned}
$$

2.7) $\cos ^{2}\left(\frac{\pi}{12}\right)-\sin ^{2}\left(\frac{\pi}{12}\right)=\frac{\sqrt{3}}{2}$

จาn $\cos ^{2}\left(\frac{\pi}{12}\right)-\sin ^{2}\left(\frac{\pi}{12}\right)$

$$
\begin{aligned}
& =\cos \left(\frac{\pi}{6}\right) \\
& =\frac{\sqrt{3}}{2}
\end{aligned}
$$

2.9)
$\frac{2 \tan \left(22.5^{\circ}\right)}{1-\tan ^{2}\left(22.5^{\circ}\right)}=1$
$\sin \frac{2 \tan \left(22.5^{\circ}\right)}{1-\tan ^{2}\left(22.5^{\circ}\right)}=\tan \left(45^{\circ}\right)$

$$
=1
$$

2.2) \square

$$
2 \sin \left(15^{\circ}\right) \cos \left(15^{\circ}\right)
$$

$41 n$

$$
\begin{aligned}
& 2 \sin \left(15^{\circ}\right) \cos \left(15^{\circ}\right) \\
= & \sin \left(30^{\circ}\right) \\
= & \frac{1}{2}
\end{aligned}
$$

2.4) $2 \cos ^{2}\left(22.5^{\circ}\right)-1$

$$
=\frac{\sqrt{2}}{2}
$$

ann $2 \cos ^{2}\left(22.5^{\circ}\right)-1=\cos \left(45^{\circ}\right)$

$$
=\frac{\sqrt{2}}{2}
$$

2.6) $1-2 \sin ^{2}\left(\frac{\pi}{8}\right)=\frac{\sqrt{2}}{2}$

大าก $1-2 \sin ^{2}\left(\frac{\pi}{8}\right)=\cos \left(\frac{\pi}{4}\right)$

$$
=\frac{\sqrt{2}}{2}
$$

2.8) $\sin \left(\frac{4 \pi}{18}\right) \cos \left(\frac{\pi}{9}\right)-\cos \left(\frac{11 \pi}{18}\right) \sin \left(\frac{\pi}{9}\right)=1$

बาn $\sin \left(\frac{11 \pi}{18}\right) \cos \left(\frac{\pi}{9}\right)-\cos \left(\frac{4 \pi}{18}\right) \sin \left(\frac{\pi}{9}\right)$

$$
\begin{aligned}
& =\sin \left(\frac{11 \pi}{18}-\frac{\pi}{9}\right) \\
& =\sin \left(\frac{\pi}{2}\right) \\
& =1
\end{aligned}
$$

2.10) $\cos \left(\frac{\pi}{3}\right) \cos \left(\frac{\pi}{12}\right)+\sin \left(\frac{\pi}{3}\right) \sin \left(\frac{\pi}{12}=\frac{\sqrt{2}}{2}\right.$
orn $\cos \left(\frac{\pi}{3}\right) \cos \left(\frac{\pi}{12}\right)+\sin \left(\frac{\pi}{3}\right) \sin \left(\frac{\pi}{12}\right)$

$$
\begin{aligned}
& =\cos \left(\frac{\pi}{3}-\frac{\pi}{12}\right) \\
& =\cos \left(\frac{\pi}{4}\right) \\
& =\frac{\sqrt{2}}{2}
\end{aligned}
$$

3. กำหนด $A=0, B=\frac{\pi}{2}, C=\frac{3 \pi}{2}, D=2 \pi$

ถ้า $\operatorname{con} 1=\cos (\alpha)=\frac{9}{6}, A \leq \alpha \leq B$ และ $\operatorname{con} 2=\sin (\beta)=-\frac{1}{2}, C \leq \beta \leq D$ จงหา
3.1)

$$
\begin{gathered}
0 \leq \alpha \leq \frac{\pi}{2} \\
\sin (\alpha)=\frac{\sqrt{11}}{6}
\end{gathered}
$$

3.2)

$$
\begin{aligned}
& \frac{3 \pi}{2} \leq \beta \leq 2 \pi \\
& \cos (\beta)=\frac{\sqrt{3}}{2}
\end{aligned}
$$

$$
\sqrt{2^{2}-1^{2}}=\sqrt{3}
$$

3.4)

$$
\sin (\alpha-\beta)=\frac{\sqrt{3} \sqrt{1}}{12}+\frac{5}{12}
$$

$$
\begin{aligned}
\sin (\alpha-\beta) & =\sin (\alpha) \cos (\beta)-\cos (\alpha) \sin (\beta) \\
& =\frac{\sqrt{11}}{6} \cdot \frac{\sqrt{3}}{2}-\frac{5}{6} \cdot\left(-\frac{1}{2}\right) \\
& =\frac{\sqrt{3} \sqrt{11}}{12}+\frac{5}{12}
\end{aligned}
$$

$$
\begin{aligned}
& \frac{3 \pi}{2} \leq \beta \leq 2 \pi \\
& \tan (\beta)=-\frac{1}{\sqrt{3}}=-\frac{\sqrt{3}}{3}
\end{aligned}
$$

3.5) $\cos (\beta-\alpha)$

$$
=\frac{5 \sqrt{3}}{12}-\frac{\sqrt{11}}{12}
$$

$$
\begin{aligned}
\cos (\beta-\alpha) & =\cos (\beta) \cos (\alpha)+\sin (\beta) \sin (\alpha) \\
& =\frac{\sqrt{3}}{2} \cdot \frac{5}{6}+\left(-\frac{1}{2}\right) \cdot \frac{\sqrt{n}}{6} \\
& =\frac{5 \sqrt{3}}{12}-\frac{\sqrt{11}}{12}
\end{aligned}
$$

3.6) \square $=\frac{5 \sqrt{11}}{16}-\frac{9 \sqrt{3}}{16}$

$$
\begin{aligned}
\tan (\alpha+\beta) & =\frac{\tan (\alpha)+\tan (\beta)}{1-\tan (\alpha) \tan (\beta)} \\
& =\frac{\frac{\sqrt{11}}{5}+\left(-\frac{\sqrt{3}}{3}\right)}{1-\frac{\sqrt{11}}{5} \cdot\left(-\frac{\sqrt{3}}{3}\right)} \\
& =\frac{3 \sqrt{11}-5 \sqrt{3}}{15+\sqrt{3} \sqrt{11} \cdot \frac{15-\sqrt{3} \sqrt{11}}{15-\sqrt{3}}}=\frac{5 \sqrt{11}}{16}-\frac{9 \sqrt{3}}{16}
\end{aligned}
$$

3.7)

$$
\begin{aligned}
\sin (2 \alpha) & =2 \sin (\alpha) \cos (\alpha) \\
& =2\left(\frac{\sqrt{\pi}}{6}\right)\left(\frac{5}{6}\right) \\
& =\frac{5 \sqrt{11}}{18}
\end{aligned}
$$

3.8)

$$
\begin{aligned}
\tan (2 \beta) & =\frac{2 \tan (\beta)}{1-\tan ^{2}(\beta)} \\
& =\frac{2\left(-\frac{\sqrt{3}}{3}\right)}{1-\left(-\frac{\sqrt{3}}{3}\right)^{2}} \\
& =\frac{-\frac{2 \sqrt{3}}{3}}{\frac{2}{3}}=-\sqrt{3}
\end{aligned}
$$

4. กำหนด $A=\pi, B=\frac{3 \pi}{2}, C=\frac{\pi}{2}, D=\pi$

ถ้า $\operatorname{con} 1=\sin (\alpha)=-\frac{3}{4}, A \leq \alpha \leq B$ และ $\operatorname{con} 2=\cos (\beta)=-\frac{1}{4}, C \leq \beta \leq D$ จงหา
4.1) $\cos (\alpha)=\sim \frac{\sqrt{7}}{4}$

$$
\cos (\alpha)=-\frac{\sqrt{7}}{4}
$$

4.3)

$$
\tan (\alpha)=\frac{3}{\sqrt{7}}=\frac{3 \sqrt{7}}{7}
$$

4.5) $\cos (\alpha+\beta)$

$$
\begin{aligned}
\cos (\alpha+\beta) & =\cos (\alpha) \cos (\beta)-\sin (\alpha) \sin (\beta) \\
& =\left(-\frac{\sqrt{7}}{4}\right)\left(-\frac{1}{4}\right)-\left(-\frac{3}{4}\right)\left(\frac{\sqrt{15}}{4}\right) \\
& =\frac{\sqrt{7}}{16}+\frac{3 \sqrt{15}}{16}
\end{aligned}
$$

4.7)

$$
\begin{aligned}
& \text { 4.7) } \begin{aligned}
& \sin (2 \alpha) \\
& \sin (2 \alpha)=2 \sin (\alpha) \cos (\alpha) \\
&=2\left(-\frac{3}{4}\right)\left(-\frac{\sqrt{7}}{4}\right) \\
&=\frac{3 \sqrt{7}}{8}
\end{aligned}
\end{aligned}
$$

$$
=\frac{3 \sqrt{7}}{8}
$$

5. ถ้า Cond $=\cos \left(86^{\circ}\right)=0.079$

จงหา Question $=\sin \left(43^{\circ}\right)$

$$
\begin{aligned}
\sin \left(43^{\circ}\right) & =\sin \left(\frac{86^{\circ}}{2}\right) \\
& =\sqrt{\frac{1-\cos \left(86^{\circ}\right)}{2}} \\
& =\sqrt{0.465} \quad \text { स1 } 43^{\circ} \text { ost qua } \\
& \text { mani }
\end{aligned}
$$

4.2) $\sin (\beta)$ $=\frac{\sqrt{15}}{4}$

$$
\begin{aligned}
& \frac{\pi}{2} \leq \beta \leq \pi \\
& \sin (\beta)=\frac{\sqrt{15}}{4}
\end{aligned}
$$

4.4) $\sin (\alpha-\beta)$

$$
=\frac{3}{16}+\frac{\sqrt{7} \sqrt{15}}{16}
$$

$$
\begin{aligned}
\sin (\alpha-\beta) & =\sin (\alpha) \cos (\beta)-\cos (\alpha) \sin (\beta) \\
& =\left(-\frac{3}{4}\right)\left(-\frac{1}{4}\right)-\left(-\frac{\sqrt{7}}{4}\right)\left(\frac{\sqrt{15}}{4}\right) \\
& =\frac{3}{16}+\frac{\sqrt{7} \sqrt{15}}{16}
\end{aligned}
$$

48) $\tan (\beta-\alpha)$ $=\frac{\sqrt{15}}{8}+\frac{3 \sqrt{7}}{8}$

$$
\begin{aligned}
\tan (\beta-\alpha) & =\frac{\tan (\beta)-\tan (\alpha)}{1+\tan (\beta) \tan (\alpha)} \\
& =\frac{-\sqrt{15}-\frac{3}{\sqrt{7}}}{1+(-\sqrt{15})\left(\frac{3}{\sqrt{7}}\right)} \\
& =\frac{-\sqrt{15 \sqrt{7}}-3}{\sqrt{7}-3 \sqrt{15}} \cdot \frac{\sqrt{15}}{\sqrt{7}+3 \sqrt{15}}=\frac{3 \sqrt{7}}{8}
\end{aligned}
$$

4.8) $\tan (2 \beta)$ $=\frac{\sqrt{15}}{7}$

$$
\begin{aligned}
\tan (2 \beta) & =\frac{2 \tan (\beta)}{1-\tan ^{2}(\beta)} \\
& =\frac{2(-\sqrt{15})}{1-(-\sqrt{15})^{2}}=\frac{\sqrt{15}}{7}
\end{aligned}
$$

6. ถ้า Cond $=\cos \left(20^{\circ}\right)=0.940$

จงหา Question $=\cos \left(10^{\circ}\right)$

$$
\begin{aligned}
\cos \left(10^{\circ}\right) & =\cos \left(\frac{20^{\circ}}{2}\right) \\
& =\sqrt{\frac{1+\cos \left(20^{\circ}\right)}{2}} \\
& =\sqrt{0.97}
\end{aligned}
$$

$$
\begin{aligned}
& N o l=\left[\begin{array}{cc}
.1=\operatorname{Cos}\left(\frac{7 \pi}{12}\right) & .2=\operatorname{Sin}\left(15^{\circ}\right) \\
.3=\operatorname{Tan}\left(75^{\circ}\right) & .4=\operatorname{Cot}\left((-105)^{\circ}\right) \\
.5=\operatorname{Csc}\left(-\frac{19 \pi}{12}\right) & .6=\operatorname{Sin}\left(-\frac{23 \pi}{12}\right) \\
.7=\operatorname{Cos}\left((-165)^{\circ}\right) & .8=\operatorname{Tan}\left(165^{\circ}\right)
\end{array}\right], \operatorname{No} 2=\left[\begin{array}{cc}
.1=\operatorname{Cos}\left(\frac{\pi}{18}\right) \operatorname{Cos}\left(\frac{\pi}{9}\right)-\operatorname{Sin}\left(\frac{\pi}{18}\right) \operatorname{Sin}\left(\frac{\pi}{9}\right) & .2=2 \operatorname{Sin}\left(15^{\circ}\right) \operatorname{Cos}\left(15^{\circ}\right) \\
.3=\operatorname{Sin}\left(12^{\circ}\right) \operatorname{Cos}\left(48^{\circ}\right)+\operatorname{Cos}\left(12^{\circ}\right) \operatorname{Sin}\left(48^{\circ}\right) & .4=2 \operatorname{Cos}\left(22.5^{\circ}\right)^{2}-1 \\
.5=\frac{\operatorname{Tan}\left(50^{\circ}\right)-\operatorname{Tan}\left(20^{\circ}\right)}{1+\operatorname{Tan}\left(50^{\circ}\right) \operatorname{Tan}\left(20^{\circ}\right)} \\
.7=\operatorname{Cos}\left(\frac{\pi}{12}\right)^{2}-\operatorname{Sin}\left(\frac{\pi}{12}\right)^{2} & .6=1-2 \operatorname{Sin}\left(\frac{\pi}{8}\right)^{2} \\
.9=\frac{2 \operatorname{Tan}\left(22.5^{\circ}\right)}{1-\operatorname{Tan}\left(22.5^{\circ}\right)^{2}} & .8=\operatorname{Sin}\left(\frac{11 \pi}{18}\right) \operatorname{Cos}\left(\frac{\pi}{9}\right)-\operatorname{Cos}\left(\frac{11 \pi}{18}\right) \operatorname{Sin}\left(\frac{\pi}{9}\right) \\
\hline 10=\operatorname{Cos}\left(\frac{\pi}{3}\right) \operatorname{Cos}\left(\frac{\pi}{12}\right)+\operatorname{Sin}\left(\frac{\pi}{3}\right) \operatorname{Sin}\left(\frac{\pi}{12}\right)
\end{array}\right]
\end{aligned}
$$

$$
\begin{aligned}
& \text { No5 }=\left[\text { Cond }=\left(\operatorname{Cos}\left(86^{\circ}\right)=0.070\right), \text { Question }=\operatorname{Sin}\left(43^{\circ}\right)\right], \quad,\left[\begin{array}{c}
M \\
U \\
T
\end{array}\right] \\
& \text { No6 }=\left[\text { Cond }=\left(\operatorname{Cos}\left(20^{\circ}\right)=0.940\right), \text { Question }=\operatorname{Cos}\left(10^{\circ}\right)\right], \quad,\left[\begin{array}{c}
M \\
U \\
T
\end{array}\right]
\end{aligned}
$$

$$
\begin{aligned}
& \text { Ans } I=\left[\begin{array}{cc}
.1=\left(\operatorname{Cos}\left(\frac{7 \pi}{12}\right)=\frac{\sqrt{2}}{4}-\frac{\sqrt{2} \sqrt{3}}{4}\right) & .2=\left(\operatorname{Sin}\left(15^{\circ}\right)=\frac{\sqrt{2} \sqrt{3}}{4}-\frac{\sqrt{2}}{4}\right) \\
.3=\left(\operatorname{Tan}\left(75^{\circ}\right)=2+\sqrt{3}\right) & .4=\left(\operatorname{Cot}\left((-105)^{\circ}\right)=2-\sqrt{3}\right) \\
.5=\left(\operatorname{Css}\left(-\frac{19 \pi}{12}\right)=-\sqrt{2}+\sqrt{2} \sqrt{3}\right) & .6=\left(\operatorname{Sin}\left(-\frac{23 \pi}{12}\right)=\frac{\sqrt{2} \sqrt{3}}{4}-\frac{\sqrt{2}}{4}\right) \\
.7=\left(\operatorname{Cos}\left((-165)^{\circ}\right)=-\frac{\sqrt{2}}{4}-\frac{\sqrt{2} \sqrt{3}}{4}\right) & .8=\left(\operatorname{Tan}\left(165^{\circ}\right)=-2+\sqrt{3}\right)
\end{array}\right],\left[\begin{array}{c}
\frac{:}{: /} \\
M \\
a \\
t \\
h \\
@ \\
M \\
U \\
T \\
\frac{\partial}{:(}
\end{array}\right]
\end{aligned}
$$

> Ans $5=\left(\operatorname{Sin}\left(43^{\circ}\right)=(\operatorname{Sqrt}(0.4650)=0.682)\right)$,
> Ans $6=\left(\operatorname{Cos}\left(10^{\circ}\right)=(\operatorname{Sqrt}(0.9700)=0.985)\right)$

