

แบบฝึกหัดเรื่อง ตรีโกณมิติ
\square

ชื่อ-นามสกุล

เลขประจำตัว No. 1
\qquad
\qquad

1. วิรัตน์ยืนอยู่ห่างจากตึกหลังหนึ่งเป็นระยะทางตามแนวราบ $D=96$

เขามองเห็นยอดตึก และยอดเสาอากาศซึ่งตั้งอยู่บนยอดตึกเป็นมุมเงย $\alpha=30^{\circ}$ และ $\beta=45^{\circ}$ ตามลำดับ

$$
\begin{aligned}
\tan 30^{\circ} & =\frac{|B C|}{96} \\
|B C| & =96 \tan 30^{\circ} \\
& =32 \sqrt{3}
\end{aligned}
$$

$$
\begin{aligned}
\tan 45^{\circ} & =\frac{|B D|}{96} \\
|B D| & =96 \tan 45^{\circ} \\
& =96
\end{aligned}
$$

ตอบ เสาอากาศสูง $a b=32 \sqrt{3}=40.574$ _ เมตร
2. เรือสองลำแส่นออกจากจุด O หร้อมกัน โดยเรือลำหนึ่งแล่นตรงไปยังจุด A เป็นระยะทาง $a=7 \mathrm{~km}$ อีกลำหนึ่งแล่นตรงไปยังจุด B ระยะทาง $b=4 \mathrm{~km}$ ถ้าแนวที่เรือทั้งสองลำแล่นออกจากกันทำมุม $\alpha=30^{\circ}$ แล้ว จงหาระยะห่างระหว่างจุด A และ จุด B

$$
\begin{aligned}
|A B|^{2} & =4^{2}+7^{2}-2(4)(7) \cos 30^{\circ} \\
& =16+49-56\left(\frac{\sqrt{3}}{2}\right) \\
& =65-28 \sqrt{3} \\
A B & =\sqrt{65-28 \sqrt{3}}
\end{aligned}
$$

ตอบ จุด A และจุด B อยู่ห่างกัน \qquad 4.062 กิโลเมตร
3. ขณะที่เรือใบของทิพย์อยู่ห่างจากแนวซายฝั่งเป็นระยะทาง $x=84$ เมตร ทิพย์มองเห็นยอคหน้าผาด้วยมุมเงย $\alpha=30^{\circ}$
3.1) จงหาความสูงของหน้าผา

$$
\begin{aligned}
\tan 30^{\circ} & =\frac{h}{84} \\
h & =84 \tan 30^{\circ} \\
& =28 \sqrt{3}
\end{aligned}
$$

ตอบ หน้าผาสูง $=48.497$ \qquad เมตร
4. เมื่ออรวรรณยื่อยู่บนพื้นราบห่างจากเสาอากาศของสถานีโทรทัศน์แห่งหนึ่ง

เป็นระยะทาง $a=61$ เมตร จะมองเห็นยอดเสาอากาศเป็นมุมเงย α°
และเมื่ออรวรรณยืนอยู่ห่างจากเสาอากาศเป็นระยะทาง $b=279$ เมตร จะมองเห็นยอดเสาอากาศเป็นมุมเงย β° ถ้ามุมเงยทั้งสองนั้นรวมกันได้หนึ่งมุมฉาก ถ้าอรวรรณสูงประมาณ $h=185$ เซนติเมตร แล้วเสาอากาศสูงประมาณเท่าใด

$\tan (\alpha)=\frac{h}{61} \rightarrow h=69 \tan (\alpha)$

$$
\tan (\beta)=\frac{h}{279} \rightarrow h=279 \tan (\beta)
$$

Qi7ń $h=61(2.1386)=130.4569$

$$
\tan ^{2}(\alpha)=\frac{279}{61}
$$

Q:17 $\sin ^{-1} \tan (\alpha)=279 \tan (\beta)$
$=279 \cdot \frac{\sin (\beta)}{\cos (\beta)}$
$=279 \cdot \frac{\sin (90-\alpha)}{\cos (90-\alpha)}$
$=279 \cdot \frac{\cos (\alpha)}{\sin (\alpha)}$
$\tan (\alpha) \cdot \frac{\sin (\alpha)}{\cos (\alpha)}=\frac{279}{61}$

5. กานต์ติตาสูงประมาณ $h=165$ เซนตินตร
 จงหาว่ารกบรรทุกอยู่ห่างจากข้อมยามประมามกี่เมตร

$A=\frac{45.65}{\tan \left(45^{\circ}\right)}=45.15$
ตอบ รถบรรหุกอยู่ห่างจากข้อมยามประมาณ \qquad 55.728

เมตตรร (ทศนิยม 3 ตำแหน่ง)
6. วัฒนพลต้องการถ่ายภาพของตนเอง โดยติดตั้งกล้องถ่ายรูปเข้ากับขาตั้งกล้องซึ่งสูง $h=102$ เซนติเมตร

ถ้าวัพนพลสูง $H=177$ เซนติเมตร และกล้องมีมุมรับภาพทั้งมุมกัมและมุมเงเเป็น $\alpha=30^{\circ}$
วัฒนพลจะต้องยืนห่างจากจุดตั้งกล้องอย่างน้อยกี่เซนติเมตร จึงจะได้ภาพถ่ายเต็มตัว

$$
\begin{aligned}
\tan \left(30^{\circ}\right) & =\frac{75}{x} \\
x & =\frac{75}{\tan \left(30^{\circ}\right)} \approx 130 \\
\tan \left(30^{\circ}\right) & =\frac{102}{x} \\
x & =\frac{102}{\tan \left(30^{\circ}\right)} \approx 177
\end{aligned}
$$

ตอบ วัฒนหลจะต้องยืนห่างจากกล้อง \qquad _เซนติเมตร จึงจะได้ภาพถ่ายเต็มตัว (ตอบเต็มหน่วยเซนติเมตร))
7. หอคอยแห่งหนึ่งสูง $H=320$ เมตร ตั้งอยู่บนยอดเนินเขา

จากจุดที่พีรวัพน์ยืนอยู่สามารถมองเห็นยอดหอคอยด้วยมุมเงย $\alpha=70{ }^{\circ}$
และมองเห็นฐานหอคอยด้วยมุมเงย $\beta=50^{\circ}$
(ตอบในรูปทศนิยม 3 ตำนหนุ่ง)
7.1) จงหาว่าฐานหอคอยอยู่ห่างจากพีรวัฒน์เท่าใด

7.2) จงหาความสูงของเนินเขา

$$
\begin{aligned}
\sin \left(50^{\circ}\right) & =\frac{h}{320} \\
h & =320 \sin \left(50^{\circ}\right) \\
& =245.134
\end{aligned}
$$

ตอบ ฐานหอคอยอยู่ห่างจากพีรวัฒน์ 320 เ.เมตร
ตอบ เนินเขาสูง $245.134 \ldots \ldots$

XXX
X Math@MUT XXX6300108-00001XX TrigonometryExercise8 for No.1

$$
\begin{gathered}
\text { No1 }=\left[\mathrm{D}=96, \alpha=30^{\circ}, \beta=45^{\circ}\right] \\
\text { No2 }=\left[a=7, b=4, \alpha=30^{\circ}\right] \\
\text { No3 }=\left[x=84, \alpha=30^{\circ}, y=120\right] \\
\text { No4 }=[a=61, b=279, h=185]
\end{gathered}
$$

$$
\text { No } 4=\left[h=165, N=11, H=4, \mathrm{D}_{1}=\text { North }, \alpha=45^{\circ}, \mathrm{D}_{2}=\text { West }, \beta=55^{\circ}\right]
$$

$$
\begin{aligned}
& \text { No } 4=\left[h=102, H=177, \alpha=30^{\circ}\right] \\
& \text { No4 }=\left[H=320, \alpha=70^{\circ}, \beta=50^{\circ}\right]
\end{aligned}
$$

XXX

$$
\begin{aligned}
& \text { Ans } 1=[96-32 \sqrt{3}=40.574], \quad, \quad A n s 2=[\sqrt{65-28 \sqrt{3}}=4.062], \quad, \quad A n s 3=\left[\begin{array}{c}
. l=(28 \sqrt{3}=48.497) \\
.2=\left(\arctan \left(\frac{7 \sqrt{3}}{30}\right)=22.006^{\circ}\right)
\end{array}\right], \\
& \text { Ans } 4=132.307, \quad, \quad A n s 5=55.728, \quad, \quad \text { Ans } 6=177, \quad, \quad \text { Ans } 7=\left[\begin{array}{l}
.1=320 \\
.2=245
\end{array}\right], \quad,\left[\begin{array}{c}
@ \\
M \\
U \\
T
\end{array}\right]
\end{aligned}
$$

