

แบบฝึกหัดเรื่อง อนุพันธ์

ชื่อ-นามสกุล
เลขประจำตัว $\quad \mathrm{NO}$.

1. จงหาอนุพันธ์ของพังก์ชันต่อไปนี้ โดยใช้นิยามของอนุพันธ์ $f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}$
1.1) $f(x)=x^{2}+5 x-2$

$$
\begin{aligned}
f^{\prime}(x) & =\lim _{h \rightarrow 0} \frac{\left[(x+h)^{2}+5(x+h)-2\right]-\left[x^{2}+5 x-2\right]}{h} \\
& =\lim _{h \rightarrow 0} \frac{\left(x^{2}+2 x h+h^{2}+5 h+5 h-2-x^{2}-5 x+2\right)}{h} \\
& =\lim _{h \rightarrow 0} \frac{h(2 x+h+5)}{h} \\
& =2 x+5
\end{aligned}
$$

1.2) $f(x)=4 x^{3}+5$
$f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{\left[4(x+h)^{3}+5\right]-\left[4 x^{3}+5\right]}{h}$
$=\lim _{h \rightarrow 0} \frac{\left[4 x^{3}+12 x^{2} h+12 x h^{2}+4 h^{3}+75-4 x^{5}-5\right]}{h}$
$=\lim _{h \rightarrow 0} \frac{K\left(12 x^{2}+12 x h+4 h^{2}\right)}{h}=12 x^{2}$
1.4) $f(x)=2 x^{\frac{1}{3}}$

$$
\begin{aligned}
& f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{\sqrt[3]{h+h}-2 \sqrt[3]{x}}{h} \cdot\left(\sqrt[3]{(x+h)^{2}}+\sqrt[3]{x(x+h)}+\sqrt[3]{x}\right. \\
& \quad=\lim _{h \rightarrow 0} \frac{2}{h(x+h)^{2}}+\sqrt[3]{x(x+h)}+\sqrt[3]{x} \\
& \frac{\left.\sqrt[3]{(x+h)^{3}}-\sqrt[3]{x^{3}}\right)}{\sqrt{(x+h)^{2}}+\sqrt[3]{x(x+h)}+\sqrt[3]{x^{2}}} \\
& \quad \lim _{h \rightarrow 0} \frac{2}{h} \frac{(x+h-x)}{\sqrt[3]{(x+h)^{2}}+\sqrt[3]{x(x+h)}+\sqrt[3]{x^{2}}}
\end{aligned}
$$

$=\frac{2}{\sqrt[3]{x^{2}}+\sqrt[3]{x^{2}}+\sqrt[3]{x^{2}}}=\frac{2}{3 x^{\frac{2}{3}}}$

$$
=\lim _{h \rightarrow 0} \frac{\left(x^{2}+2 x h+h^{2}+5 x+5 h-2-x^{2}-5 x+2\right)}{h}=\lim _{h \rightarrow 0} \frac{\left[4\left(x^{3}+3 x^{2} h+3 x h^{2}+h^{3}\right)+5\right]-\left[4 x^{3}+5\right]}{h}
$$

1.3) $f(x)=\frac{3}{x}$

$$
\begin{aligned}
f^{\prime}(x) & =\lim _{h \rightarrow 0} \frac{\frac{3}{x+h}-\frac{3}{x}}{h} \\
& =\lim _{h \rightarrow 0} \frac{3 x-3 x-3 h}{h(x)(x+h)} \\
& =\lim _{h \rightarrow 0} \frac{-3 h}{h x(x+h)}=-\frac{3}{x^{2}}
\end{aligned}
$$

2. จงหาอนุพันธ์ของพังก์ชันต่อไปนี้ ณ จุดที่กำหนคให้ โดยใช้นิยามของอนุพันธ์ $f^{\prime}(a)=\lim _{x \rightarrow a} \frac{f(x)-f(a)}{x-a}$
2.1) $f(x)=4 x^{3}-5, a=5$

$$
\begin{aligned}
f^{\prime}(a) & =\lim _{x \rightarrow 5} \frac{\left(4 x^{3}-5\right)-\left(4\left(5^{3}\right)-5\right)}{x-5} \\
& =\lim _{x \rightarrow 5} \frac{4 x^{3}-500}{x-5} \\
& =\lim _{x \rightarrow 5} \frac{4\left(x^{3}-5^{3}\right)}{x-5} \\
& =\lim _{x \rightarrow 5} \frac{4(x-5)\left(x^{2}+5 x+25\right)}{x-5} \\
& =300
\end{aligned}
$$

$$
\text { 2.2) } \begin{aligned}
f(x) & =\frac{6}{x^{2}} \\
f^{\prime}(a) & =\lim _{x \rightarrow-1} \frac{\frac{6}{x^{2}}-\frac{6}{(-1)^{2}}}{x+1} \\
& =\lim _{x \rightarrow-1} \frac{\frac{6}{x^{2}}-6}{x+1} \\
& =\lim _{x \rightarrow-1} \frac{6-6 x^{2}}{x^{2}(x+1)} \\
& =\lim _{x \rightarrow-1} \frac{6(1-x)(1+x)}{x^{2}(x+1)}
\end{aligned}
$$

$$
=12
$$

3. จงหาอนุพันธ์ของฟังก์ชันต่อไปนี้ โดยใช้สูตร
3.1) $f(x)=x^{2}+5 x-2$

$$
f^{\prime}(x)=2 x+5
$$

3.3) $f(x)=2 x^{5}+x^{2}+3 x+5$

$$
f^{\prime}(x)=10 x^{4}+2 x+3
$$

3.5) $f(x)=\frac{2}{\sqrt{x}}+4 \sqrt{x}+5 x$

$$
\begin{aligned}
f^{\prime}(x) & =\frac{d}{d x}\left(\frac{2}{x^{\frac{1}{2}}}+4 x^{\frac{1}{2}}+5 x\right) \\
& =-\frac{1}{x^{\frac{3}{2}}}+\frac{2}{\sqrt{x}}+5
\end{aligned}
$$

3.7) $f(x)=(2 x+2)\left(3 x^{2}+5 x+2\right)$

$$
\begin{aligned}
f^{\prime}(x) & =\frac{d}{d x}\left((2 x+2)\left(3 x^{2}+5 x+2\right)\right) \\
& =\frac{d}{d x}\left(6 x^{3}+16 x^{2}+14 x+4\right) \\
& =18 x^{2}+32 x+14
\end{aligned}
$$

3.4) $f(x)=\frac{4}{3} x^{5}+\frac{4}{5} x^{4}+\frac{1}{3}$

$$
f^{\prime}(x)=\frac{20}{3} x^{4}+\frac{16}{5} x^{3}
$$

3.2) $f(x)=4 x^{3}+5$

$$
f^{\prime}(x)=12 x^{2}
$$

3.6) $f(x)=x^{\frac{3}{4}}+\frac{1}{x^{\frac{1}{4}}}+x^{\frac{1}{4}}+\frac{1}{x^{\frac{1}{4}}}$

$$
\begin{aligned}
f^{\prime}(x) & =\frac{d}{d x}\left(x^{\frac{3}{4}}+x^{-\frac{3}{4}}+x^{\frac{1}{4}}+x^{-\frac{1}{4}}\right) \\
& =\frac{3}{4} x^{-\frac{1}{4}}-\frac{3}{4} x^{-\frac{7}{4}}+\frac{1}{4} x^{-\frac{3}{4}}-\frac{1}{4} x^{-\frac{5}{4}} \\
& =\frac{3}{4 x^{\frac{1}{4}}}-\frac{3}{4 x^{\frac{7}{4}}}+\frac{1}{4 x^{\frac{3}{4}}}-\frac{1}{4 x^{\frac{5}{4}}}
\end{aligned}
$$

3.8) $f(x)=(x+4)(\sqrt{x}+3)$

$$
\begin{aligned}
f^{\prime}(x) & =\frac{d}{d x}((x+4)(\sqrt{x}+3)) \\
& =\frac{d}{d x}\left(x^{\frac{3}{2}}+3 x+4 x^{\frac{1}{2}}+12\right) \\
& =\frac{3}{2} x^{\frac{1}{2}}+3+2 x^{-\frac{1}{2}} \\
& =\frac{3 \sqrt{x}}{2}+\frac{2}{\sqrt{x}}+3
\end{aligned}
$$

3.9) $f(x)=\frac{4 x+3}{x-3}$

$$
\begin{aligned}
f^{\prime}(x) & =\frac{d}{d x}\left(\frac{4 x+3}{x-3}\right) \\
& =\frac{(x-3) \frac{d}{d x}(4 x+3)-(4 x+3) \frac{d}{d x}(x-3)}{(x-3)^{2}} \\
& =\frac{(x-3)(4)-(4 x+3)(1)}{(x-3)^{2}} \\
& =\frac{4 x-12-4 x-3}{(x-3)^{2}} \\
& =-\frac{15}{(x-3)^{2}}
\end{aligned}
$$

3.11) $f(x)=\left(\frac{1}{x^{5}}+\frac{2}{x^{2}}\right)\left(4 x^{4}+5\right)$

$$
\begin{aligned}
f^{\prime}(x) & =\frac{d}{d x}\left(\left(\frac{1}{x^{5}}+\frac{2}{x^{2}}\right)\left(4 x^{4}+5\right)\right) \\
& =\frac{d}{d x}\left(4 x^{-1}+5 x^{-5}+8 x^{2}+10 x^{-2}\right) \\
& =-4 x^{-2}-25 x^{-6}+16 x-20 x^{-3} \\
& =-\frac{4}{x^{2}}-\frac{25}{x^{6}}+16 x-\frac{20}{x^{3}}
\end{aligned}
$$

3.10) $f(x)=\frac{3 x^{7}-2 x^{3}}{\sqrt{x}}$

$$
\begin{aligned}
f^{\prime}(x) & =\frac{d}{d x}\left(\frac{3 x^{7}-2 x^{3}}{\sqrt{x}}\right) \\
& =\frac{d}{d x}\left(3 x^{\frac{13}{2}}-2 x^{\frac{5}{2}}\right) \\
& =\frac{39}{2} x^{\frac{4}{2}}-5 x^{\frac{3}{2}}
\end{aligned}
$$

3.12) $f(x)=\left(4 x^{5}+3 x^{4}\right)\left(\frac{x+2}{x-3}\right)$
$f^{\prime}(x)=\frac{d}{d x}\left(\frac{4 x^{6}+11 x^{5}+6 x^{4}}{(x-3)}\right)$
$=\frac{(x-3) \frac{d}{d x}\left(4 x^{6}+11 x^{5}+6 x^{4}\right)-\left(4 x^{6}+11 x^{5}+6 x^{4}\right) \frac{d}{d x}(x-3)}{(x-3)^{2}}$
$=\frac{(x-3)\left(24 x^{5}+55 x^{4}+24 x^{3}\right)-\left(4 x^{6}+11 x^{5}+6 x^{4}\right)(1)}{(x-3)^{2}}$
$=\frac{24 x^{6}+55 x^{5}+24 x^{4}-72 x^{5}-165 x^{4}-72 x^{3}-4 x^{6}-11 x^{5}-6 x^{6}}{(x-3)^{2}}$
$=\frac{20 x^{6}-28 x^{5}-147 x^{4}-72 x^{3}}{(x-3)^{2}}$
4. จงหาอนุพันธ์ของฟังก์ชันต่อไปนี้ ณ จุดที่กำหนดให้
4.1) $f(x)=2 x^{5}+x^{2}+3 x+5, a=2$

$$
f^{\prime}(x)=10 x^{4}+2 x+3
$$

$$
\begin{aligned}
f^{\prime}(a) & =10\left(2^{4}\right)+2(2)+3 \\
& =167
\end{aligned}
$$

4.2) $f(x)=\sqrt{2}+4 \sqrt{x}+5 x, a=4$

$$
\begin{aligned}
f^{\prime}(x) & =\frac{d}{d x}\left(2 x^{-\frac{1}{2}}+4 x^{\frac{1}{2}}+5 x\right) \\
& =-x^{-\frac{3}{2}}+2 x^{-\frac{1}{2}}+5 \\
& =-\frac{1}{\sqrt{x^{3}}}+\frac{2}{\sqrt{x}}+5
\end{aligned}
$$

$$
f^{\prime}(a)=-\frac{1}{\sqrt{4^{3}}}+\frac{2}{\sqrt{4}}+5
$$

$$
=-\frac{1}{8}+1+5
$$

$$
=\frac{47}{8}
$$

$$
N o 01=\left[\begin{array}{c}
.1=\left(\mathrm{f}(x)=x^{2}+5 x-2\right) \\
.2=\left(\mathrm{f}(x)=4 x^{3}+5\right) \\
.3=\left(\mathrm{f}(x)=\frac{3}{x}\right) \\
.4=\left(\mathrm{f}(x)=2 x^{(1 / 3)}\right)
\end{array}\right], \quad, \text { No02 }=\left[\begin{array}{c}
.1=\left[\mathrm{f}(x)=4 x^{3}-5, a=5\right] \\
.2=\left[\mathrm{f}(x)=\frac{6}{x^{2}}, a=-1\right]
\end{array}\right]
$$

$$
\left.\begin{array}{cc}
1=\left(\mathrm{f}(x)=x^{2}+5 x-2\right) & .2=\left(\mathrm{f}(x)=4 x^{3}+5\right) \\
.3=\left(\mathrm{f}(x)=2 x^{5}+x^{2}+3 x+5\right) & .4=\left(\mathrm{f}(x)=\frac{4}{3} x^{5}+\frac{4}{5} x^{4}+\frac{1}{3}\right) \\
.5=\left(\mathrm{f}(x)=\frac{2}{\sqrt{x}}+4 \sqrt{x}+5 x\right) & .6=\left(\mathrm{f}(x)=x^{(3 / 4)}+\frac{1}{x^{(3 / 4)}}+x^{(1 / 4)}+\frac{1}{x^{(1 / 4)}}\right) \\
.7=\left(\mathrm{f}(x)=(2 x+2)\left(3 x^{2}+5 x+2\right)\right) & .8=(\mathrm{f}(x)=(x+4)(\sqrt{x}+3)) \\
.9=\left(\mathrm{f}(x)=\frac{3+4 x}{-3+x}\right) & .10=\left(\mathrm{f}(x)=\frac{3 x^{7}-2 x^{3}}{\sqrt{x}}\right) \\
.11=\left(\mathrm{f}(x)=\left(\frac{1}{x^{5}}+\frac{2}{x^{2}}\right)\left(4 x^{4}+5\right)\right) & .12=\left(\mathrm{f}(x)=\left(4 x^{5}+3 x^{4}\right)\left[\frac{x+2}{-3+x}\right]\right)
\end{array}\right],
$$

- X Math@MUT XXX6300206-00001XX Diff02 Answers for No. 1

$$
\begin{aligned}
& \text { Ansl } \left.=\left[\begin{array}{c}
.1=(\mathrm{f}(x)=2 x+5) \\
.2=\left(\mathrm{f}(x)=12 x^{2}\right) \\
.3=\left(\mathrm{f}^{\prime}(x)=-\frac{3}{x^{2}}\right) \\
. \\
.4=\left(\mathrm{f}(x)=\frac{2}{3 x^{(2 / 3)}}\right)
\end{array}\right], \quad \text {, Ans } 2=\left[\begin{array}{l}
.1=(\mathrm{f}(5)=300) \\
.2=(\mathrm{f}(-1)=12)
\end{array}\right], \quad \text {, Ans } 4=\left[\begin{array}{l}
.1=[\mathrm{f}(2)=167] \\
.2=\left[\mathrm{f}(4)=\frac{47}{8}\right.
\end{array}\right]\right] \\
& A n s 3=\left[\begin{array}{cc}
. l=(\mathrm{f}(x)=2 x+5) & .2=\left(\mathrm{f}(x)=12 x^{2}\right) \\
.3=\left(\mathrm{f}(x)=10 x^{4}+2 x+3\right) & .4=\left(\mathrm{f}(x)=\frac{20}{3} x^{4}+\frac{16}{5} x^{3}\right) \\
.5=\left(\mathrm{f}(x)=-\frac{1}{x^{(3 / 2)}}+\frac{2}{\sqrt{x}}+5\right) & .6=\left(\mathrm{f}(x)=\frac{3}{4 x^{(1 / 4)}}-\frac{3}{4 x^{(7 / 4)}}+\frac{1}{4 x^{(3 / 4)}}-\frac{1}{4 x^{(5 / 4)}}\right) \\
.7=\left(\mathrm{f}(x)=18 x^{2}+32 x+14\right) & .8=\left(\mathrm{f}(x)=\frac{3 x+6 \sqrt{x}+4}{2 \sqrt{x}}\right) \\
.9=\left(\mathrm{f}(x)=-\frac{15}{(-3+x)^{2}}\right) & .10=\left(\mathrm{f}(x)=\frac{x^{(3 / 2)}\left(39 x^{4}-10\right)}{2}\right) \\
.11=\left(\mathrm{f}(x)=\frac{16 x^{7}-4 x^{4}-20 x^{3}-25}{x^{6}}\right) & .12=\left(\mathrm{f}(x)=\frac{20 x^{6}-28 x^{5}-147 x^{4}-72 x^{3}}{(-3+x)^{2}}\right)
\end{array}\right],
\end{aligned}
$$

X [Page $=0001]$ XXX

