

แบบฝึกหัดเรื่อง อนพันธ์

ชื่อ-นามสกุล
เลขประจำตัว
No. 3

1. จงหาอนุพันธ์ของฟังก์ชันต่อไปนี้
1.1)

$$
\begin{aligned}
f(x) & =(5 x+4)^{7} \\
f^{\prime}(x) & =7(5 x+4)^{6} \cdot(5) \\
& =35(5 x+4)^{6}
\end{aligned}
$$

1.3)

$$
\begin{aligned}
f(x) & =\sqrt{3-2 x} \\
f^{\prime}(x) & =\frac{1}{2}(3-2 x)^{\frac{1}{2}-1} \cdot(-2) \\
& =\frac{1}{2 \sqrt{3-2 x}} \cdot(-2)=\frac{-1}{\sqrt{3-2 x}}
\end{aligned}
$$

1.5)

$$
\begin{aligned}
f(x) & =\frac{1}{\left(2 x^{2}+2 x+5\right)^{7}} \\
f^{\prime}(x) & =-7\left(2 x^{2}+2 x+5\right)^{-8} \cdot(4 x+2) \\
& =\frac{-7(4 x+2)}{\left(2 x^{2}+2 x+5\right)^{8}}
\end{aligned}
$$

1.7)

$$
\begin{aligned}
f(x) & =(2 x+3)^{3}(5 x-6) \\
f^{\prime}(x) & =5(2 x+3)^{3}+3(2 x+3)^{2} \cdot(2)(5 x-6) \\
& =5(2 x+3)^{3}+6(5 x-6)(2 x+3)^{2}
\end{aligned}
$$

$$
\text { 1.2) } \begin{aligned}
f(x) & =\left(2 x^{4}+2 x+7\right)^{7} \\
f^{\prime}(x) & =7\left(2 x^{4}+2 x+7\right) \cdot\left(8 x^{3}+2\right) \\
& =7\left(8 x^{3}+2\right)\left(2 x^{4}+2 x+7\right)
\end{aligned}
$$

1.4) $f(x)=\frac{1}{5 x^{5}+4}=\left(5 x^{5}+4\right)^{-1}$

$$
\begin{aligned}
f^{\prime}(x) & =-1\left(5 x^{4}+4\right)^{-2} \cdot\left(25 x^{4}\right) \\
& =-25 x^{4}\left(5 x^{4}+4\right)^{-2} \\
& =\frac{-25 x^{4}}{\left(5 x^{4}+4\right)^{2}}
\end{aligned}
$$

1.6) $f(x)=\frac{1}{\sqrt{5-4 x}}=(5-4 x)^{-1 / 2}$

$$
\begin{aligned}
f^{\prime}(x) & =-\frac{1}{2}(5-4 x)^{-\frac{1}{2}-1} \\
& =2(5-4 x)^{-3 / 2} \\
& =\frac{2}{(5-4 x)^{3 / 2}}
\end{aligned}
$$

$$
\sim \sim \sim \sim \ldots
$$

1.8) $f(x)=\frac{(2 x+3)^{3}}{(5 x-6)^{3}}$

$$
\begin{aligned}
& f^{\prime}(x)=\frac{3(2 x+3)^{2} \cdot(2)(5 x-6)^{3}-3(5 x-6)^{2}(5)(2 x+3)^{3}}{\left((5 x-6)^{3}\right)^{2}} \\
= & \frac{(5 x-6)^{2}\left[6(2 x+3)^{2} \cdot(5 x-6)-15(2 x+3)^{3}\right]}{(5 x-6)^{64}} \\
= & \frac{(2 x+3)^{2}[6(5 x-6)-15(2 x+3)]}{(5 x-6)^{4}}=\frac{-81(2 x+3)^{2}}{(5 x-6)^{4}}
\end{aligned}
$$

2. กำหนดข้อมูลตามตารางด้านล่าง จงหา $F^{\prime}(k=2)$ เมื่อ

x	$f(x)$	$f^{\prime}(x)$	$g(x)$	$g^{\prime}(x)$
-6	3	-4	-3	16
-5	4	-3	-4	14
-4	5	-2	-5	12
-3	6	-1	-6	10
-2	7	0	7	8
-1	-6	1	6	6
0	-5	2	5	4

2.1) $F(x)=f(g(x))$

$$
\begin{aligned}
F^{\prime}(k) & =f^{\prime}(g(k)) \cdot g^{\prime}(k) \\
F^{\prime}(2) & =f^{\prime}(g(2)) \cdot g^{\prime}(2) \\
& =f^{\prime}(3) \cdot(0)=5(0) \\
F^{\prime}(2) & =0
\end{aligned}
$$

x	$f(x)$	$f^{\prime}(x)$	$g(x)$	$g^{\prime}(x)$
1	-4	3	4	2
2	-3	4	3	0
3	-2	5	2	-2
4	-1	6	1	-4
5	0	7	0	-6
6	1	8	-1	-8
7	2	9	-2	-10

2.2) $F(x)=g(f(x))$
$F^{\prime}(k)=g^{\prime}(f(k)) \cdot f^{\prime}(k)$
$F^{\prime}(2)=g^{\prime}(f(2)) \cdot f^{\prime}(\varepsilon)$
$=g^{\prime}(-3)(4)=10(4)$
$F^{\prime}(2)=40$
3. กำหนดข้อมูลตามตารางด้านล่าง และ $F(x)=f(g(x))$ จงหา $F^{\prime}(k=3$

x	-8	-7	-6	-5	-4	-3	-2	-1	0
$g(x)$	-5	-4	-3	-2	-1	0	1	2	3
$g^{\prime}(x)$	-7	-6	-5	-4	-3	-2	-1	0	1
x	1	2	3	4	5	6	7	8	9
$g(x)$	4	5	6	7	8	9	-8	-7	-6
$g^{\prime}(x)$	2	3	4	5	6	7	8	9	10

3.1) $f(x)=x \cdot g(x)$

$$
F^{\prime}(k)=f^{\prime}(g(k))=(g(k) \cdot g(g(k)))^{\prime}
$$

$F^{\prime}(k)=g(k)(g(g(k)))^{\prime}+g^{\prime}(k) \cdot g(g(k))$
$F(k)=g(k) \cdot g^{\prime}(g(k)) \cdot g^{\prime}(k)+g^{\prime}(k) \cdot g(g(k))$
$F^{\prime}(3)=g(3) \cdot g^{\prime}(g(3)) \cdot g^{\prime}(3)+g^{\prime}(3) \cdot g(g(3))$
$=6(7)(4)+(4)(9)=204$
3.2) $\begin{aligned} f(x) & =\frac{g(x)}{x} \\ F^{\prime}(k) & =f(g(k))=\left(\frac{g(g(k))}{g(k)}\right)^{\prime}\end{aligned}$
$F^{\prime}(k)=\frac{g^{\prime}(g(k)) \cdot g^{\prime}(k) \cdot g(k)-g\left(g(k) \cdot g^{\prime}(k)\right.}{(g(k))^{2}}$
$F^{\prime}(3)=\frac{g^{\prime}(g(3)) \cdot g^{\prime}(3) \cdot g(3)-g(g(3)) \cdot g^{\prime}(3)}{(g(3))^{2}}=\frac{7(4)(6)-9(4)}{36}=\frac{11}{3}$
4. กำหนด $x(t)=\frac{4 t^{2}}{5+t^{2}}, P(x)=8 \sqrt{x}-9$ $k=6$ จงหา
4.1) $\frac{d x}{d t}=\frac{\left(4 t^{2}\right)^{\prime}\left(5+t^{2}\right)-4 t^{2}\left(5+t^{2}\right)^{\prime}}{\left(5+t^{2}\right)^{2}}$ 4.2) $\frac{d P}{d x}=8\left(\frac{1}{2} x^{\frac{1}{2}-1}\right)$
4.3) $\left.\frac{d P}{d t}\right|_{t=k}=\left.\frac{d P}{d x} \cdot \frac{d x}{d t}\right|_{t=6}$
$=8 t\left(5+t^{2}\right)-4 t^{2}(2 t)$
$\left(5+t^{2}\right)^{2}$
$\frac{d x}{d t}=\frac{40 t}{\left(5+t^{2}\right)^{2}}$ Diff03 for No. 3
$N O 1=\left[\begin{array}{cc}.1=\left(\mathrm{f}(x)=(5 x+4)^{7}\right) & .2=\left(\mathrm{f}(x)=\left(2 x^{4}+2 x+7\right)^{7}\right) \\ .3=(\mathrm{f}(x)=\sqrt{3-2 x}) & .4=\left(\mathrm{f}(x)=\frac{1}{5 x^{5}+4}\right) \\ .5=\left(\mathrm{f}(x)=\frac{1}{\left(2 x^{2}+2 x+5\right)^{7}}\right) & .6=\left(\mathrm{f}(x)=\frac{1}{\sqrt{5-4 x}}\right) \\ .7=\left(\mathrm{f}(x)=(2 x+3)^{3}(5 x-6)\right) & .8=\left(\mathrm{f}(x)=\frac{(2 x+3)^{3}}{(5 x-6)^{3}}\right)\end{array}\right]$

No3 : $k=3$

x	1	2	3	4	5	6	7	8	9
$g(x)$	4	5	6	7	8	9	-8	-7	-6
$g^{\prime}(x)$	2	3	4	5	6	7	8	9	10

$$
N o 04=\left[\mathrm{x}(t)=\frac{4 t^{2}}{5+t^{2}}, \mathrm{P}(x)=8 \sqrt{x}-9, k=6\right]
$$

X [Page = 0003] XXX

X Math@MUT XXX6300207-00003XX Diff03 Answers for No. 3

$$
\begin{aligned}
& A n s l=\left[\begin{array}{cc}
.1=\left(f^{\prime}(x)=35(5 x+4)^{6}\right) & .2=\left(f^{\prime}(x)=7\left(2 x^{4}+2 x+7\right)^{6}\left(8 x^{3}+2\right)\right) \\
.3=\left(f^{\prime}(x)=-\frac{1}{\sqrt{3-2 x}}\right) & .4=\left(f^{\prime}(x)=-\frac{25 x^{4}}{\left.\left(5 x^{5}+4\right)^{2}\right)}\right. \\
.5=\left(f^{\prime}(x)=-\frac{7(4 x+2)}{\left(2 x^{2}+2 x+5\right)^{8}}\right) \\
.7=\left(f^{\prime}(x)=6(2 x+3)^{2}(5 x-6)+5(2 x+3)^{3}\right) & .6=\left(f^{\prime}(x)=\frac{2}{\left.(5-4 x)^{(3 / 2)}\right)}\right. \\
.8=\left(f^{\prime}(x)=-\frac{81(2 x+3)^{2}}{(5 x-6)^{4}}\right)
\end{array}\right]
\end{aligned}
$$

[^0]
[^0]: X [Page $=0003]$ XXX

