$$
\left.\begin{array}{c}
\text { NoI }=\left(\tan (A)=\frac{3}{5}\right), N o 2=\left(\sec (A)=\frac{6}{5}\right), N o 3=\left(\cos (A)=\frac{1}{x}\right), \text { No4 }=\left(\cot (A)=\frac{2}{x}\right) \\
\text { No5 }=\left[\begin{array}{cc}
.1=(y=\cos (\theta)) & .2=(y=6 \sin (\theta)) \\
.4=(y=4 \cos (3 \theta)) & .5=\left(y=-\frac{1}{5} \sin (4 \theta)\right) \\
.7=\left(y=-4 \cos \left(\frac{\pi \theta}{5}\right)\right) & .6=\left(y=\left(y=-4 \sin \left(\frac{\theta}{3}\right)-3\right)\right. \\
\left..8=-\frac{1}{4} \cos (3 \pi \theta)+5\right)
\end{array}\right] \\
\text { No6 }=\left[\begin{array}{lll}
y=-\cos (x)+3 & y=3 \sin (2 \pi x)-4 & y=\frac{5}{2} \cos \left(\frac{x}{2}\right) \\
\frac{M A}{T H} \\
y=-\frac{5}{2} \sin (2 \pi x) & y=\frac{3}{2} \sin \left(\frac{x}{3}\right)-2 & \frac{M A}{T H}
\end{array} \frac{\frac{M A}{T H}}{}\right.
\end{array}\right] .
$$

$$
\text { No1 }=\left(\cos (A)=\frac{8}{9}\right), \text { No } 2=\left(\cot (A)=\frac{4}{3}\right) \text {,No3 }=\left(\sin (A)=\frac{2}{x}\right) \text {, No4 }=\left(\sec (A)=\frac{3}{x}\right)
$$

$$
\begin{gathered}
\text { No5 }=\left[\begin{array}{ccc}
. l=(y=\cos (\theta)) & .2=(y=-2 \sin (\theta)) & .3=(y=\sin (2 \theta)) \\
.4=(y=6 \cos (2 \theta)) & .5=\left(y=5 \cos \left(\frac{\theta}{6}\right)\right) & .6=\left(y=-\frac{1}{4} \sin (3 \theta)-2\right) \\
.7=\left(y=-\frac{1}{4} \sin (6 \pi \theta)\right) & .8=\left(y=-6 \cos \left(\frac{\pi \theta}{3}\right)+5\right) & \frac{M A}{T H} \\
\text { No6 }=\left[\begin{array}{lll}
y=-2 \sin (2 \pi x) & y=\frac{1}{2} \sin \left(\frac{x}{3}\right)+2 & y=3 \sin \left(\frac{x}{3}\right) \frac{M A}{T H} \\
y=\cos (x)-3 & y=-\frac{5}{2} \cos \left(\frac{\pi x}{3}\right)-2 & \frac{M A}{T H}
\end{array} \frac{M A}{T H}\right.
\end{array}\right]
\end{gathered}
$$

$$
\begin{gathered}
\text { NoI }=\left(\cos (A)=\frac{6}{7}\right), N o 2=\left(\csc (A)=\frac{8}{3}\right), N o 3=\left(\tan (A)=\frac{x}{4}\right), \text { No } 4=(\cot (A)=x) \\
\text { No5 }=\left[\begin{array}{ccc}
. l=(y=\sin (\theta)) & .2=(y=4 \cos (\theta)) & .3=(y=\cos (4 \theta)) \\
.4=(y=-2 \sin (4 \theta)) & .5=\left(y=\frac{1}{4} \sin (6 \theta)\right) & .6=\left(y=-6 \cos \left(\frac{\theta}{5}\right)+3\right) \\
.7=(y=-5 \cos (6 \pi \theta)) & .8=\left(y=-\frac{1}{6} \sin \left(\frac{\pi \theta}{5}\right)+3\right) & \frac{M A}{T H}
\end{array}\right] \\
\text { No6 }=\left[\begin{array}{ccc}
y=-\frac{3}{2} \cos (2 \pi x)+4 & y=\frac{5}{2} \sin (2 \pi x) & y=\frac{3}{2} \cos \left(\frac{x}{3}\right)-4 \\
y=-3 \cos \left(\frac{x}{3}\right) & y=-\sin (x)-3 & \frac{M A}{T H}
\end{array} \frac{\frac{M A}{T H}}{T H}\right.
\end{gathered}
$$

$$
N o 1=\left(\tan (A)=\frac{8}{3}\right), N o 2=\left(\cot (A)=\frac{2}{5}\right), N o 3=\left(\sin (A)=\frac{x}{5}\right), N o 4=\left(\csc (A)=\frac{x}{5}\right)
$$

$$
\text { No5 }=\left[\begin{array}{ccc}
. l=(y=\sin (\theta)) & .2=(y=4 \cos (\theta)) & .3=(y=\sin (2 \theta)) \\
.4=(y=-6 \sin (2 \theta)) & .5=\left(y=-\frac{1}{5} \cos (4 \theta)\right) & .6=\left(y=2 \sin \left(\frac{\theta}{4}\right)+5\right) \\
.7=\left(y=-5 \cos \left(\frac{\pi \theta}{6}\right)\right) & .8=\left(y=-\frac{1}{5} \cos (2 \pi \theta)+5\right) & \frac{M A}{T H}
\end{array}\right]
$$

$$
\text { No6 }=\left[\begin{array}{cccc}
y=-2 \cos \left(\frac{\pi x}{2}\right) & y=-\frac{1}{2} \cos \left(\frac{\pi x}{2}\right)+4 & y=\sin (x) & \frac{M A}{T H} \\
y=\frac{5}{2} \cos \left(\frac{x}{2}\right) & y=\frac{3}{2} \sin \left(\frac{x}{3}\right)-4 & \frac{M A}{T H} & \frac{M A}{T H}
\end{array}\right]
$$

$$
\text { Nol }=\left(\sin (A)=\frac{4}{9}\right), N o 2=\left(\csc (A)=\frac{9}{4}\right), N o 3=\left(\tan (A)=\frac{x}{4}\right), N o 4=\left(\cot (A)=\frac{4}{x}\right)
$$

$$
\begin{gathered}
\text { No5 }=\left[\begin{array}{ccc}
. l=(y=\sin (\theta)) & .2=(y=4 \cos (\theta)) & .3=(y=\cos (2 \theta)) \\
.4=(y=-2 \cos (4 \theta)) & .5=\left(y=3 \sin \left(\frac{\theta}{6}\right)\right) & .6=\left(y=-\frac{1}{2} \sin (3 \theta)+2\right) \\
.7=\left(y=-\frac{1}{6} \sin (5 \pi \theta)\right) & .8=\left(y=-6 \cos \left(\frac{\pi \theta}{3}\right)+4\right) & \frac{M A}{T H}
\end{array}\right] \\
\text { No6 }=\left[\begin{array}{ccc}
y=-3 \cos (2 \pi x)-2 & y=\frac{5}{2} \cos \left(\frac{\pi x}{2}\right) & y=-\frac{5}{2} \cos \left(\frac{x}{2}\right)+3 \frac{M A}{T H} \\
y=-\sin (x)-1 & y=3 \sin \left(\frac{x}{2}\right) & \frac{M A}{T H}
\end{array} \frac{M A}{T H}\right]
\end{gathered}
$$

$$
\begin{gathered}
\text { No1 }=\left(\cos (A)=\frac{4}{5}\right), N o 2=\left(\cot (A)=\frac{7}{4}\right), N o 3=(\sin (A)=x), N o 4=\left(\sec (A)=\frac{7}{x}\right) \\
\text { No5 }=\left[\begin{array}{ccc}
.1=(y=\cos (\theta)) & .2=(y=-4 \sin (\theta)) & .3=(y=\sin (6 \theta)) \\
.4=(y=2 \cos (5 \theta)) & .5=\left(y=-2 \sin \left(\frac{\theta}{4}\right)\right) & .6=\left(y=\frac{1}{4} \sin (5 \theta)+2\right) \\
.7=\left(y=-\frac{1}{4} \cos \left(\frac{\pi \theta}{6}\right)\right) & .8=(y=-3 \sin (4 \pi \theta)+4) & \frac{M A}{T H}
\end{array}\right]
\end{gathered}
$$

$$
\text { No6 }=\left[\begin{array}{cccc}
y=\frac{1}{2} \cos (2 \pi x) & y=\sin (x) & y=\frac{3}{2} \cos \left(\frac{x}{3}\right)+3 & \frac{M A}{T H} \\
y=-\frac{5}{2} \sin (2 \pi x)-2 & y=-2 \cos \left(\frac{x}{3}\right) & \frac{M A}{T H} & \frac{M A}{T H}
\end{array}\right]
$$

$$
\text { No1 }=\left(\tan (A)=\frac{4}{5}\right), \text { No } 2=\left(\sec (A)=\frac{6}{5}\right), \text { No3 }=\left(\cos (A)=\frac{x}{5}\right), \text { No } 4=\left(\csc (A)=\frac{x}{2}\right)
$$

$$
\begin{gathered}
\text { No5 }=\left[\begin{array}{ccc}
.1=(y=\cos (\theta)) & .2=(y=4 \sin (\theta)) & .3=(y=\cos (4 \theta)) \\
.4=(y=-3 \cos (2 \theta)) & .5=\left(y=-\frac{1}{2} \sin (5 \theta)\right) & .6=\left(y=-2 \cos \left(\frac{\theta}{3}\right)+1\right) \\
.7=\left(y=-\frac{1}{4} \sin (6 \pi \theta)\right) & .8=\left(y=-4 \cos \left(\frac{\pi \theta}{6}\right)+2\right) & \frac{M A}{T H}
\end{array}\right] \\
\text { No6 }=\left[\begin{array}{cccc}
y=-\cos (x)+2 & y=\frac{3}{2} \cos \left(\frac{\pi x}{3}\right)-3 & y=-2 \sin (2 \pi x) & \frac{M A}{T H} \\
y=\frac{1}{2} \sin \left(\frac{x}{2}\right) & y=-\frac{1}{2} \cos \left(\frac{x}{3}\right)-4 & \frac{M A}{T H} & \frac{M A}{T H}
\end{array}\right]
\end{gathered}
$$

$$
\begin{gathered}
\text { NoI }=\left(\tan (A)=\frac{5}{8}\right), \operatorname{No} 2=\left(\cot (A)=\frac{2}{5}\right), \operatorname{No3}=\left(\cos (A)=\frac{x}{2}\right), \text { No4 }=\left(\sec (A)=\frac{x}{3}\right) \\
\text { No5 }=\left[\begin{array}{ccc}
.1=(y=\sin (\theta)) & .2=(y=-3 \cos (\theta)) & .3=(y=\sin (5 \theta)) \\
.4=(y=-2 \cos (5 \theta)) & .5=\left(y=-\frac{1}{6} \sin (5 \theta)\right) & .6=\left(y=5 \cos \left(\frac{\theta}{3}\right)+4\right) \\
.7=\left(y=-6 \cos \left(\frac{\pi \theta}{2}\right)\right) & .8=\left(y=-\frac{1}{5} \sin (3 \pi \theta)-2\right) & \frac{M A}{T H}
\end{array}\right]
\end{gathered}
$$

$$
\text { No6 }=\left[\begin{array}{cccc}
y=\sin (x)+3 & y=-\frac{1}{2} \sin \left(\frac{x}{2}\right) & y=2 \cos (2 \pi x) & \frac{M A}{T H} \\
y=-2 \cos \left(\frac{x}{2}\right)+4 & y=-\frac{1}{2} \sin \left(\frac{\pi x}{3}\right)-2 & \frac{M A}{T H} & \frac{M A}{T H}
\end{array}\right]
$$

$$
\text { No1 }=\left(\cos (A)=\frac{5}{7}\right), \text { No2 }=\left(\csc (A)=\frac{9}{5}\right), \text { No3 }=\left(\tan (A)=\frac{7}{x}\right) \text {, No } 4=\left(\sec (A)=\frac{x}{4}\right)
$$

$$
\left.\begin{array}{c}
\text { No5 }=\left[\begin{array}{ccc}
. l=(y=\cos (\theta)) & .2=(y=-5 \sin (\theta)) & .3=(y=\cos (3 \theta)) \\
.4=(y=-5 \cos (6 \theta)) & .5=\left(y=\frac{1}{2} \cos (3 \theta)\right) & .6=\left(y=-6 \sin \left(\frac{\theta}{4}\right)-1\right) \\
.7=\left(y=-\frac{1}{5} \cos (2 \pi \theta)\right) & .8=\left(y=-2 \cos \left(\frac{\pi \theta}{6}\right)-4\right) & \frac{M A}{T H}
\end{array}\right] \\
\text { No6 }=\left[\begin{array}{lll}
y=-3 \sin \left(\frac{x}{2}\right) & y=\frac{1}{2} \sin \left(\frac{x}{2}\right)-4 & y=-\frac{3}{2} \sin \left(\frac{\pi x}{3}\right) \\
\frac{M A}{T H} \\
y=-\cos (x)-2 & y=3 \cos \left(\frac{\pi x}{3}\right)+3 & \frac{M A}{T H}
\end{array} \frac{M A}{T H}\right.
\end{array}\right] .
$$

$$
N o 1=\left(\tan (A)=\frac{4}{3}\right), N o 2=\left(\cot (A)=\frac{8}{7}\right), N o 3=\left(\sin (A)=\frac{5}{x}\right), N o 4=\left(\sec (A)=\frac{x}{7}\right)
$$

$$
\text { No5 }=\left[\begin{array}{ccc}
. l=(y=\sin (\theta)) & .2=(y=-5 \cos (\theta)) & .3=(y=\sin (3 \theta)) \\
.4=(y=-5 \sin (2 \theta)) & .5=\left(y=3 \cos \left(\frac{\theta}{2}\right)\right) & .6=\left(y=\frac{1}{4} \sin (5 \theta)+2\right) \\
.7=\left(y=-\frac{1}{5} \sin (4 \pi \theta)\right) & .8=\left(y=-3 \cos \left(\frac{\pi \theta}{6}\right)+5\right) & \frac{M A}{T H}
\end{array}\right]
$$

$$
\text { No6 }=\left[\begin{array}{cccc}
y=-\frac{3}{2} \sin \left(\frac{x}{2}\right)-3 & y=-\frac{1}{2} \cos (2 x) & y=-\frac{3}{2} \cos (2 \pi x)+4 & \frac{M A}{T H} \\
y=\cos (x)-3 & y=\frac{1}{2} \sin \left(\frac{\pi x}{3}\right) & \frac{M A}{T H} & \frac{M A}{T H}
\end{array}\right]
$$

$$
\text { Nol }=\left(\sin (A)=\frac{5}{6}\right), \text { No2 }=\left(\sec (A)=\frac{7}{2}\right), N o 3=\left(\tan (A)=\frac{x}{5}\right), \text { No } 4=\left(\csc (A)=\frac{x}{4}\right)
$$

$$
N o 5=\left[\begin{array}{ccc}
.1=(y=\sin (\theta)) & .2=(y=-3 \cos (\theta)) & .3=(y=\sin (5 \theta)) \\
.4=(y=2 \cos (4 \theta)) & .5=\left(y=-\frac{1}{5} \sin (3 \theta)\right) & .6=\left(y=5 \cos \left(\frac{\theta}{6}\right)+2\right) \\
.7=\left(y=-\frac{1}{5} \cos (3 \pi \theta)\right) & .8=\left(y=-2 \sin \left(\frac{\pi \theta}{5}\right)-3\right) & \frac{M A}{T H}
\end{array}\right]
$$

$$
\text { No6 }=\left[\begin{array}{cccc}
y=\frac{3}{2} \sin \left(\frac{x}{2}\right) & y=\frac{1}{2} \cos \left(\frac{\pi x}{3}\right) & y=-\frac{5}{2} \cos \left(\frac{x}{3}\right)+4 & \frac{M A}{T H} \\
y=-\cos (x)-3 & y=\frac{5}{2} \sin \left(\frac{\pi x}{3}\right)+2 & \frac{M A}{T H} & \frac{M A}{T H}
\end{array}\right]
$$

$$
\begin{gathered}
\text { No1 }=\left(\sin (A)=\frac{4}{7}\right), \operatorname{No2}=\left(\csc (A)=\frac{5}{3}\right), \operatorname{No3}=\left(\cos (A)=\frac{x}{5}\right), \operatorname{No4}=\left(\sec (A)=\frac{7}{x}\right) \\
\text { No5 }=\left[\begin{array}{ccc}
.1=(y=\sin (\theta)) & .2=(y=-4 \cos (\theta)) & .3=(y=\sin (3 \theta)) \\
.4=(y=-5 \cos (2 \theta)) & .5=\left(y=-\frac{1}{3} \sin (4 \theta)\right) & .6=\left(y=3 \sin \left(\frac{\theta}{2}\right)-4\right) \\
.7=\left(y=-\frac{1}{6} \sin \left(\frac{\pi \theta}{5}\right)\right) & .8=(y=-2 \sin (4 \pi \theta)-3) & \frac{M A}{T H}
\end{array}\right]
\end{gathered}
$$

$$
\text { No6 }=\left[\begin{array}{cccc}
y=-3 \cos (2 \pi x) & y=\sin (x)+2 & y=-\frac{1}{2} \sin \left(\frac{\pi x}{3}\right)+3 & \frac{M A}{T H} \\
y=2 \cos \left(\frac{x}{3}\right)-3 & y=\frac{1}{2} \sin (2 x) & \frac{M A}{T H} & \frac{M A}{T H}
\end{array}\right]
$$

$$
\left.\begin{array}{c}
\text { Nol }=\left(\tan (A)=\frac{5}{3}\right), \operatorname{No} 2=\left(\csc (A)=\frac{7}{5}\right), \operatorname{No3}=\left(\cos (A)=\frac{5}{x}\right), \text { No4 }=\left(\cot (A)=\frac{x}{6}\right) \\
\text { No5 }=\left[\begin{array}{ccc}
.1=(y=\cos (\theta)) & .2=(y=-3 \sin (\theta)) & .3=(y=\cos (3 \theta)) \\
.4=(y=-2 \sin (3 \theta)) & .5=\left(y=2 \sin \left(\frac{\theta}{3}\right)\right) & .6=\left(y=-\frac{1}{4} \sin (6 \theta)+1\right) \\
.7=\left(y=-3 \cos \left(\frac{\pi \theta}{5}\right)\right) & .8=\left(y=-\frac{1}{4} \sin (3 \pi \theta)+2\right)
\end{array}\right] \\
\text { No6 }=\left[\begin{array}{ccc}
y=-\sin (x)+2 & y=-\frac{3}{2} \cos \left(\frac{x}{3}\right)-4 & y=\frac{5}{2} \sin \left(\frac{\pi x}{2}\right)-2 \\
\frac{M A}{T H} \\
y=\frac{3}{2} \sin (2 \pi x) & y=\frac{3}{2} \cos (2 x) & \frac{M A}{T H}
\end{array} \frac{M A}{T H}\right.
\end{array}\right] .
$$

$$
\begin{gathered}
\text { No1 }=\left(\sin (A)=\frac{4}{9}\right), \text { No2 }=\left(\cot (A)=\frac{2}{3}\right), \operatorname{No3}=\left(\cos (A)=\frac{x}{7}\right), \text { No4 }=\left(\csc (A)=\frac{1}{x}\right) \\
\text { No5 }=\left[\begin{array}{ccc}
.1=(y=\sin (\theta)) & .2=(y=2 \cos (\theta)) & .3=(y=\sin (2 \theta)) \\
.4=(y=-2 \sin (5 \theta)) & .5=\left(y=\frac{1}{2} \sin (3 \theta)\right) & .6=\left(y=-6 \cos \left(\frac{\theta}{5}\right)-4\right) \\
.7=\left(y=-\frac{1}{4} \sin \left(\frac{\pi \theta}{3}\right)\right) & .8=(y=-3 \cos (5 \pi \theta)-3) & \frac{M A}{T H}
\end{array}\right] \\
\text { No6 }=\left[\begin{array}{ccc}
y=\frac{5}{2} \sin \left(\frac{x}{3}\right)-2 & y=-\frac{1}{2} \cos (2 \pi x) & y=2 \sin \left(\frac{\pi x}{3}\right)+3 \\
\frac{M A}{T H} \\
y=-\frac{5}{2} \cos \left(\frac{x}{3}\right) & y=-\cos (x)+1 & \frac{M A}{T H}
\end{array} \frac{M A}{T H}\right]
\end{gathered}
$$

$$
\text { No1 }=\left(\sin (A)=\frac{5}{8}\right), \text { No2 }=\left(\cot (A)=\frac{5}{8}\right), \text { No3 }=\left(\cos (A)=\frac{x}{4}\right), \text { No } 4=\left(\sec (A)=\frac{x}{2}\right)
$$

$$
\text { No5 }=\left[\begin{array}{ccc}
. l=(y=\cos (\theta)) & .2=(y=-4 \sin (\theta)) & .3=(y=\sin (3 \theta)) \\
.4=(y=-4 \cos (3 \theta)) & .5=\left(y=-\frac{1}{2} \sin (3 \theta)\right) & .6=\left(y=-2 \sin \left(\frac{\theta}{6}\right)-4\right) \\
.7=(y=-6 \cos (2 \pi \theta)) & .8=\left(y=-\frac{1}{4} \cos \left(\frac{\pi \theta}{3}\right)-1\right) & \frac{M A}{T H}
\end{array}\right]
$$

$$
\text { No6 }=\left[\begin{array}{cccc}
y=2 \cos \left(\frac{\pi x}{2}\right)+3 & y=-\frac{3}{2} \cos (2 x) & y=2 \sin \left(\frac{x}{3}\right)-4 & \frac{M A}{T H} \\
y=-\sin (x)+3 & y=2 \cos \left(\frac{\pi x}{2}\right) & \frac{M A}{T H} & \frac{M A}{T H}
\end{array}\right]
$$

$$
\text { No1 }=\left(\cos (A)=\frac{4}{5}\right), \text { No2 }=\left(\sec (A)=\frac{3}{2}\right), N o 3=\left(\sin (A)=\frac{7}{x}\right), \operatorname{No4}=\left(\cot (A)=\frac{2}{x}\right)
$$

$$
N o 5=\left[\begin{array}{ccc}
.1=(y=\sin (\theta)) & .2=(y=5 \cos (\theta)) & .3=(y=\sin (3 \theta)) \\
.4=(y=-3 \sin (4 \theta)) & .5=\left(y=-3 \cos \left(\frac{\theta}{5}\right)\right) & .6=\left(y=\frac{1}{6} \cos (3 \theta)+3\right) \\
.7=\left(y=-6 \cos \left(\frac{\pi \theta}{5}\right)\right) & .8=\left(y=-\frac{1}{6} \sin (2 \pi \theta)+1\right) & \frac{M A}{T H}
\end{array}\right]
$$

$$
\text { No6 }=\left[\begin{array}{cccc}
y=-\cos (x)-1 & y=\frac{1}{2} \cos (2 x) & y=\frac{3}{2} \sin (2 \pi x)-2 & \frac{M A}{T H} \\
y=-\frac{5}{2} \cos (2 x)-3 & y=-2 \sin \left(\frac{\pi x}{2}\right) & \frac{M A}{T H} & \frac{M A}{T H}
\end{array}\right]
$$

$$
\left.\begin{array}{c}
\text { NoI }=\left(\cos (A)=\frac{3}{8}\right), \operatorname{No2}=\left(\csc (A)=\frac{9}{2}\right), \operatorname{No3}=\left(\tan (A)=\frac{3}{x}\right), \operatorname{No4}=\left(\cot (A)=\frac{x}{6}\right) \\
\text { No5 }=\left[\begin{array}{ccc}
.1=(y=\sin (\theta)) & .2=(y=-4 \cos (\theta)) & .3=(y=\sin (6 \theta)) \\
.4=(y=-5 \cos (6 \theta)) & .5=\left(y=-\frac{1}{6} \cos (4 \theta)\right) & .6=\left(y=-2 \cos \left(\frac{\theta}{3}\right)+5\right) \\
.7=\left(y=-\frac{1}{3} \sin \left(\frac{\pi \theta}{4}\right)\right) & .8=(y=-3 \cos (6 \pi \theta)-1) & \frac{M A}{T H}
\end{array}\right] \\
\text { No6 }=\left[\begin{array}{ccc}
y=-\cos (x)-2 & y=\frac{3}{2} \sin \left(\frac{x}{3}\right)-4 & y=-2 \sin \left(\frac{\pi x}{3}\right)-2 \\
\frac{M A}{T H} \\
y=3 \sin \left(\frac{\pi x}{3}\right) & y=3 \cos \left(\frac{x}{3}\right) & \frac{M A}{T H}
\end{array} \frac{M A}{T H}\right.
\end{array}\right] .
$$

$$
\text { No1 }=\left(\cos (A)=\frac{3}{7}\right), \text { No2 }=\left(\csc (A)=\frac{9}{8}\right) \text {,No3 }=\left(\tan (A)=\frac{5}{x}\right) \text {, No } 4=\left(\sec (A)=\frac{4}{x}\right)
$$

$$
\text { No5 }=\left[\begin{array}{ccc}
. l=(y=\sin (\theta)) & .2=(y=4 \cos (\theta)) & .3=(y=\sin (2 \theta)) \\
.4=(y=6 \sin (4 \theta)) & .5=\left(y=5 \sin \left(\frac{\theta}{4}\right)\right) & .6=\left(y=\frac{1}{4} \cos (5 \theta)-2\right) \\
.7=\left(y=-\frac{1}{4} \sin (6 \pi \theta)\right) & .8=\left(y=-5 \cos \left(\frac{\pi \theta}{6}\right)+5\right) & \frac{M A}{T H}
\end{array}\right]
$$

$$
\text { No6 }=\left[\begin{array}{cccc}
y=3 \sin (2 x) & y=-\sin (x)+2 & y=-\frac{3}{2} \cos (2 \pi x) & \frac{M A}{T H} \\
y=-\frac{5}{2} \cos \left(\frac{\pi x}{3}\right)-2 & y=2 \sin \left(\frac{x}{3}\right)+4 & \frac{M A}{T H} & \frac{M A}{T H}
\end{array}\right]
$$

$$
\text { No1 }=\left(\cos (A)=\frac{3}{4}\right), \text { No2 }=\left(\sec (A)=\frac{7}{6}\right) \text {,No3 }=\left(\sin (A)=\frac{x}{5}\right) \text {, No4 }=\left(\csc (A)=\frac{2}{x}\right)
$$

$$
\text { No5 }=\left[\begin{array}{ccc}
.1=(y=\cos (\theta)) & .2=(y=6 \sin (\theta)) & .3=(y=\cos (6 \theta)) \\
.4=(y=2 \sin (6 \theta)) & .5=\left(y=-2 \cos \left(\frac{\theta}{5}\right)\right) & .6=\left(y=-\frac{1}{2} \sin (3 \theta)+2\right) \\
.7=(y=-2 \cos (5 \pi \theta)) & .8=\left(y=-\frac{1}{3} \sin \left(\frac{\pi \theta}{4}\right)+5\right) & \frac{M A}{T H}
\end{array}\right]
$$

$$
\text { No6 }=\left[\begin{array}{cccc}
y=-\frac{5}{2} \cos (2 \pi x) & y=-\frac{5}{2} \sin (2 x) & y=3 \sin \left(\frac{\pi x}{2}\right)-4 & \frac{M A}{T H} \\
y=\frac{3}{2} \cos \left(\frac{x}{3}\right)-2 & y=\sin (x)-3 & \frac{M A}{T H} & \frac{M A}{T H}
\end{array}\right]
$$

$$
\begin{gathered}
\text { No1 }=\left(\sin (A)=\frac{3}{7}\right), \operatorname{No2}=\left(\sec (A)=\frac{5}{3}\right), \operatorname{No3}=\left(\cos (A)=\frac{x}{3}\right), \operatorname{No4}=\left(\csc (A)=\frac{2}{x}\right) \\
\text { No5 }=\left[\begin{array}{ccc}
.1=(y=\cos (\theta)) & .2=(y=2 \sin (\theta)) & .3=(y=\cos (4 \theta)) \\
.4=(y=5 \sin (2 \theta)) & .5=\left(y=-\frac{1}{5} \sin (3 \theta)\right) & .6=\left(y=-4 \cos \left(\frac{\theta}{6}\right)+1\right) \\
.7=(y=-2 \sin (6 \pi \theta)) & .8=\left(y=-\frac{1}{3} \cos \left(\frac{\pi \theta}{4}\right)+4\right) & \frac{M A}{T H}
\end{array}\right] \\
\text { No6 }=\left[\begin{array}{ccc}
y=\frac{1}{2} \cos (2 x)-4 & y=-\frac{5}{2} \cos \left(\frac{x}{3}\right) & y=-2 \sin \left(\frac{\pi x}{3}\right)+4 \\
\frac{M A}{T H} \\
y=-\sin (x)+2 & y=2 \sin \left(\frac{\pi x}{3}\right) & \frac{M A}{T H}
\end{array} \frac{M A}{T H}\right]
\end{gathered}
$$

$$
\text { No1 }=\left(\tan (A)=\frac{4}{7}\right), \text { No2 }=\left(\cot (A)=\frac{6}{7}\right), N o 3=\left(\sin (A)=\frac{4}{x}\right), N o 4=\left(\csc (A)=\frac{3}{x}\right)
$$

$$
\text { No5 }=\left[\begin{array}{ccc}
.1=(y=\sin (\theta)) & .2=(y=5 \cos (\theta)) & .3=(y=\cos (2 \theta)) \\
.4=(y=-6 \sin (5 \theta)) & .5=\left(y=-6 \cos \left(\frac{\theta}{5}\right)\right) & .6=\left(y=-\frac{1}{3} \sin (5 \theta)+1\right) \\
.7=\left(y=-5 \sin \left(\frac{\pi \theta}{2}\right)\right) & .8=\left(y=-\frac{1}{5} \cos (6 \pi \theta)+2\right) & \frac{M A}{T H}
\end{array}\right]
$$

$$
\text { No6 }=\left[\begin{array}{cccc}
y=-\frac{5}{2} \cos \left(\frac{\pi x}{2}\right) & y=-3 \sin (2 x) & y=\cos (x)-2 & \frac{M A}{T H} \\
y=-\frac{5}{2} \sin \left(\frac{x}{2}\right)-2 & y=3 \sin (2 \pi x)+2 & \frac{M A}{T H} & \frac{M A}{T H}
\end{array}\right]
$$

$$
\begin{gathered}
\text { Nol }=\left(\tan (A)=\frac{3}{4}\right), \operatorname{No} 2=\left(\cot (A)=\frac{7}{3}\right), N o 3=\left(\cos (A)=\frac{1}{x}\right), \text { No4 }=\left(\sec (A)=\frac{x}{4}\right) \\
\text { No5 }=\left[\begin{array}{ccc}
.1=(y=\sin (\theta)) & .2=(y=-4 \cos (\theta)) & .3=(y=\sin (2 \theta)) \\
.4=(y=-4 \sin (2 \theta)) & .5=\left(y=-\frac{1}{3} \cos (2 \theta)\right) & .6=\left(y=4 \cos \left(\frac{\theta}{3}\right)+3\right) \\
.7=(y=-6 \sin (2 \pi \theta)) & .8=\left(y=-\frac{1}{4} \cos \left(\frac{\pi \theta}{2}\right)+1\right) & \frac{M A}{T H}
\end{array}\right]
\end{gathered}
$$

$$
\text { No6 }=\left[\begin{array}{cccc}
y=\cos (x)+3 & y=\frac{1}{2} \cos (2 \pi x)-2 & y=\frac{1}{2} \sin \left(\frac{x}{2}\right)-4 & \frac{M A}{T H} \\
y=-\frac{1}{2} \sin \left(\frac{\pi x}{3}\right) & y=-3 \cos \left(\frac{x}{3}\right) & \frac{M A}{T H} & \frac{M A}{T H}
\end{array}\right]
$$

$$
\begin{gathered}
\text { No1 }=\left(\sin (A)=\frac{4}{9}\right), \text { No2 }=\left(\cot (A)=\frac{7}{8}\right), \operatorname{No3}=\left(\cos (A)=\frac{1}{x}\right), \operatorname{No4}=\left(\csc (A)=\frac{x}{5}\right) \\
\text { No5 }=\left[\begin{array}{ccc}
.1=(y=\sin (\theta)) & .2=(y=3 \cos (\theta)) & .3=(y=\sin (6 \theta)) \\
.4=(y=6 \cos (3 \theta)) & .5=\left(y=3 \cos \left(\frac{\theta}{6}\right)\right) & .6=\left(y=\frac{1}{5} \sin (6 \theta)+5\right) \\
.7=(y=-5 \sin (2 \pi \theta)) & .8=\left(y=-\frac{1}{4} \sin \left(\frac{\pi \theta}{5}\right)-5\right) & \frac{M A}{T H}
\end{array}\right]
\end{gathered}
$$

$$
\text { No6 }=\left[\begin{array}{cccc}
y=\frac{5}{2} \sin \left(\frac{x}{2}\right) & y=-\frac{3}{2} \cos (2 x)-2 & y=\sin (x)-1 & \frac{M A}{T H} \\
y=-\frac{5}{2} \sin \left(\frac{\pi x}{3}\right) & y=-\frac{3}{2} \cos (2 \pi x)-3 & \frac{M A}{T H} & \frac{M A}{T H}
\end{array}\right]
$$

$$
\begin{gathered}
\text { Nol }=\left(\cos (A)=\frac{3}{7}\right), N o 2=\left(\sec (A)=\frac{5}{3}\right), \operatorname{No3}=\left(\tan (A)=\frac{x}{5}\right), \text { No } 4=\left(\csc (A)=\frac{5}{x}\right) \\
\text { No5 }=\left[\begin{array}{cc}
. l=(y=\sin (\theta)) & .2=(y=-3 \cos (\theta)) \\
.4=(y=-5 \cos (6 \theta)) & .5=\left(y=\frac{1}{6} \sin (4 \theta)\right) \\
.7=(y=-3 \sin (4 \pi \theta)) & .8=(y=(y=3 \sin (4 \theta)) \\
\left.\left.y=-\frac{1}{5} \cos \left(\frac{\pi \theta}{3}\right)-5\right)+1\right)
\end{array}\right] \\
\text { No6 }=\left[\begin{array}{ccc}
y=-2 \sin \left(\frac{\pi x}{2}\right) & y=-\frac{1}{2} \cos \left(\frac{x}{3}\right) & y=\sin (x)+3 \\
\frac{M A}{T H} \\
y=\frac{1}{2} \cos \left(\frac{\pi x}{2}\right)-3 & y=2 \cos \left(\frac{x}{2}\right)+3 & \frac{M A}{T H} \\
\frac{M A}{T H}
\end{array}\right]
\end{gathered}
$$

$$
\left.\begin{array}{c}
\text { Nol }=\left(\tan (A)=\frac{7}{8}\right), N o 2=\left(\sec (A)=\frac{5}{4}\right), N o 3=\left(\sin (A)=\frac{3}{x}\right), N o 4=\left(\csc (A)=\frac{1}{x}\right) \\
\text { No5 }=\left[\begin{array}{cc}
.1=(y=\cos (\theta)) & .2=(y=-2 \sin (\theta)) \\
.4=(y=-4 \sin (6 \theta)) & .3=\left(y=\left(y=-2 \cos \left(\frac{\theta}{4}\right)\right)\right. \\
.7=\left(y=-3 \cos \left(\frac{\pi \theta}{5}\right)\right) & .6=\left(y=\frac{1}{2} \cos (4 \theta)-5\right) \\
\left.y=-\frac{1}{2} \cos (3 \pi \theta)-2\right)
\end{array}\right] \\
\text { No6 }=\left[\begin{array}{lll}
y=\frac{3}{2} \sin \left(\frac{\pi x}{2}\right)-4 & y=\sin (x)-1 & y=-\frac{1}{2} \cos \left(\frac{\pi x}{3}\right) \\
y=-\frac{1}{2} \cos \left(\frac{x}{2}\right)-3 & y=2 \cos \left(\frac{x}{2}\right) & \frac{M A}{T H}
\end{array} \frac{M A}{T H}\right.
\end{array}\right] .
$$

$$
\text { Nol }=\left(\tan (A)=\frac{4}{3}\right), \text { No2 }=\left(\cot (A)=\frac{2}{5}\right), \text { No3 }=\left(\cos (A)=\frac{x}{3}\right), \text { No4 }=\left(\csc (A)=\frac{x}{2}\right)
$$

$$
\text { No5 }=\left[\begin{array}{ccc}
.1=(y=\cos (\theta)) & .2=(y=4 \sin (\theta)) & .3=(y=\sin (4 \theta)) \\
.4=(y=6 \sin (4 \theta)) & .5=\left(y=-\frac{1}{5} \cos (2 \theta)\right) & .6=\left(y=5 \cos \left(\frac{\theta}{6}\right)+2\right) \\
.7=(y=-5 \sin (4 \pi \theta)) & .8=\left(y=-\frac{1}{4} \sin \left(\frac{\pi \theta}{6}\right)+3\right) & \frac{M A}{T H}
\end{array}\right]
$$

$$
\text { No6 }=\left[\begin{array}{cccc}
y=-2 \sin (2 \pi x)+4 & y=\frac{5}{2} \cos (2 x)+3 & y=2 \cos (2 \pi x) & \frac{M A}{T H} \\
y=-\frac{3}{2} \sin (2 x) & y=-\cos (x)+2 & \frac{M A}{T H} & \frac{M A}{T H}
\end{array}\right]
$$

$$
\begin{gathered}
\text { No1 }=\left(\sin (A)=\frac{3}{4}\right), \operatorname{No2}=\left(\cot (A)=\frac{4}{5}\right), N o 3=\left(\cos (A)=\frac{x}{3}\right), \text { No4 }=\left(\sec (A)=\frac{7}{x}\right) \\
\text { No5 }=\left[\begin{array}{cc}
.1=(y=\cos (\theta)) & .2=(y=-6 \sin (\theta)) \\
.4=(y=3 \sin (5 \theta)) & .3=\left(y=\left(y=\frac{\cos (4 \theta))}{2} \cos (3 \theta)\right)\right. \\
.7=\left(y=-\frac{1}{2} \sin \left(\frac{\pi \theta}{4}\right)\right) & .8=(y=-4 \sin (6 \pi \theta)+3)
\end{array}\right] \\
\text { No6 }=\left[\begin{array}{ccc}
y=-\frac{1}{2} \sin (2 x) & \left.y=-\frac{3}{2} \cos \left(\frac{\theta}{2}\right)+4\right) \\
y=-2 \sin \left(\frac{x x}{2}\right)-2 & y=\sin (x)+1 & \frac{M A}{T H}
\end{array}\right]
\end{gathered}
$$

$$
\begin{gathered}
\text { No1 }=\left(\cos (A)=\frac{3}{5}\right), \text { No2 }=\left(\csc (A)=\frac{7}{4}\right), \text { No3 }=\left(\sin (A)=\frac{x}{7}\right), \text { No } 4=\left(\sec (A)=\frac{x}{6}\right) \\
\text { No5 }=\left[\begin{array}{ccc}
.1=(y=\sin (\theta)) & .2=(y=-6 \cos (\theta)) & .3=(y=\cos (2 \theta)) \\
.4=(y=-3 \cos (5 \theta)) & .5=\left(y=-\frac{1}{3} \cos (4 \theta)\right) & .6=\left(y=-2 \sin \left(\frac{\theta}{3}\right)+1\right) \\
.7=\left(y=-\frac{1}{3} \sin \left(\frac{\pi \theta}{2}\right)\right) & .8=(y=-5 \sin (6 \pi \theta)+1) & \frac{M A}{T H}
\end{array}\right] \\
\text { No6 }=\left[\begin{array}{lll}
y=\frac{1}{2} \cos \left(\frac{\pi x}{2}\right) & y=\frac{5}{2} \cos \left(\frac{x}{3}\right)+2 & y=-\frac{3}{2} \sin \left(\frac{\pi x}{2}\right)-3 \\
\hline y=-\cos (x)-3 & y=\frac{M A}{T H} \sin (2 x) & \frac{M A}{T H}
\end{array} \frac{M A}{T H}\right]
\end{gathered}
$$

$$
\text { No1 }=\left(\cos (A)=\frac{3}{5}\right), N o 2=\left(\cot (A)=\frac{2}{7}\right), N o 3=\left(\sin (A)=\frac{x}{4}\right), N o 4=\left(\csc (A)=\frac{x}{5}\right)
$$

$$
\text { No5 }=\left[\begin{array}{ccc}
.1=(y=\cos (\theta)) & .2=(y=-6 \sin (\theta)) & .3=(y=\sin (2 \theta)) \\
.4=(y=2 \cos (4 \theta)) & .5=\left(y=4 \cos \left(\frac{\theta}{3}\right)\right) & .6=\left(y=-\frac{1}{4} \sin (3 \theta)-2\right) \\
.7=\left(y=-\frac{1}{6} \sin (4 \pi \theta)\right) & .8=\left(y=-3 \sin \left(\frac{\pi \theta}{5}\right)-5\right) & \frac{M A}{T H}
\end{array}\right]
$$

$$
\text { No6 }=\left[\begin{array}{cccc}
y=-\frac{1}{2} \cos \left(\frac{\pi x}{2}\right) & y=-\frac{3}{2} \sin \left(\frac{x}{2}\right) & y=\frac{1}{2} \sin \left(\frac{\pi x}{2}\right)+3 & \frac{M A}{T H} \\
y=\cos (x)+3 & y=-\frac{1}{2} \cos (2 x)-2 & \frac{M A}{T H} & \frac{M A}{T H}
\end{array}\right]
$$

$$
\text { No1 }=\left(\cos (A)=\frac{5}{8}\right), \text { No2 }=\left(\sec (A)=\frac{7}{6}\right) \text {,No3 }=\left(\tan (A)=\frac{3}{x}\right) \text {, No4 }=\left(\csc (A)=\frac{x}{6}\right)
$$

$$
\begin{gathered}
\text { No5 }=\left[\begin{array}{ccc}
. l=(y=\sin (\theta)) & .2=(y=3 \cos (\theta)) & .3=(y=\sin (4 \theta)) \\
.4=(y=-3 \cos (2 \theta)) & .5=\left(y=6 \cos \left(\frac{\theta}{3}\right)\right) & .6=\left(y=-\frac{1}{6} \cos (5 \theta)-4\right) \\
.7=\left(y=-\frac{1}{4} \cos (6 \pi \theta)\right) & .8=\left(y=-6 \cos \left(\frac{\pi \theta}{2}\right)+2\right) & \frac{M A}{T H}
\end{array}\right] \\
\text { No6 }=\left[\begin{array}{cccc}
y=-3 \cos \left(\frac{x}{3}\right) & y=-\sin (x) & y=\frac{3}{2} \sin \left(\frac{\pi x}{2}\right) \frac{M A}{T H} \\
y=2 \sin \left(\frac{x}{2}\right)-3 & y=2 \cos (2 \pi x)-4 & \frac{M A}{T H} & \frac{M A}{T H}
\end{array}\right]
\end{gathered}
$$

$$
\begin{gathered}
\text { NoI }=\left(\tan (A)=\frac{5}{6}\right), \operatorname{No} 2=\left(\csc (A)=\frac{7}{3}\right), \text { No3 }=\left(\cos (A)=\frac{5}{x}\right), \text { No } 4=\left(\cot (A)=\frac{5}{x}\right) \\
\text { No5 }=\left[\begin{array}{ccc}
. l=(y=\sin (\theta)) & .2=(y=-5 \cos (\theta)) & .3=(y=\sin (6 \theta)) \\
.4=(y=5 \cos (6 \theta)) & .5=\left(y=\frac{1}{6} \sin (3 \theta)\right) & .6=\left(y=5 \sin \left(\frac{\theta}{6}\right)+1\right) \\
.7=\left(y=-\frac{1}{5} \cos (6 \pi \theta)\right) & .8=\left(y=-2 \cos \left(\frac{\pi \theta}{4}\right)-5\right) & \frac{M A}{T H}
\end{array}\right] \\
\text { No6 }=\left[\begin{array}{lll}
y=\frac{5}{2} \cos \left(\frac{\pi x}{2}\right)-3 & y=\frac{5}{2} \cos (2 x)+3 & y=-\sin (x)+2 \\
\hline y=-2 \cos (2 \pi x) & y=-2 \sin \left(\frac{x}{2}\right) & \frac{M A}{T H}
\end{array} \frac{\frac{M A}{T H}}{T H}\right.
\end{gathered}
$$

L XXX [$>$

