

แบบฝึกหัดเรื่อง อนพันธ์

ชื่อ-นามสกุล \qquad เลขประจำตัว $N 0.2$

1. จงหาอนุพันธ์ของฟังก์ชันต่อไปนี้ โดยใช้นิยามของอนุพันธ์ $f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}$
1.1)

$$
\left.\begin{array}{rl}
f(x) & =\frac{x^{2}+5 x-1}{f^{\prime}(x)}
\end{array}=\lim _{h \rightarrow 0} \frac{(x+h)^{2}+5(x+h)-1-\left(x^{2}+5 x-1\right)}{h}\right)
$$

1.3)

$$
\begin{aligned}
& \begin{aligned}
f(x) & =\frac{\frac{5}{x}}{f^{\prime}(x)}=\lim _{h \rightarrow 0} \frac{\frac{5}{(x+h)}-\frac{5}{x}}{h}
\end{aligned} \\
& \begin{aligned}
f^{\prime}(x) & =\lim _{h \rightarrow 0} \frac{\frac{5}{(x+h)}-\frac{5}{x}}{h} \\
& =\lim _{h \rightarrow 0} \frac{1}{h}\left(\frac{5 x-5(x+h)}{x(x+h)}\right)
\end{aligned} \\
& =\lim _{h \rightarrow 0} \frac{1}{h}\left(\frac{-5 h}{x^{2}+x h}\right) \quad=\lim _{h \rightarrow 0} \frac{4}{(x+h)^{2 / 3}+(x+h)^{1 / 3} \cdot x^{1 / 3}+x^{2 / 3}} \\
& f^{\prime}(x)=\frac{-5}{x^{2}}=\frac{-5 x^{-2}}{m} \\
& \begin{array}{l}
=\lim _{h \rightarrow 0} \frac{4}{(x+h)^{2 / 3}+(x} \\
f(x)=\frac{4}{3 x^{2 / 3}}
\end{array} \\
& \text { 1.4) } \begin{aligned}
f(x) & =4 x^{1 / 3} \\
f^{\prime}(x) & =\lim _{h \rightarrow 0} \frac{4(x+h)^{1 / 3}-4 x^{1 / 3}}{h}
\end{aligned} \\
& =\lim _{h \rightarrow 0} \frac{4}{h}\left[\left((x+h)^{1 / 3}-x^{1 / 3}\right) \cdot \frac{\left((x+h)^{2 / 3}+x^{1 / 3}(x+h)^{1 / 3}+x^{2 / 3}\right)}{\left((x+h)^{2 / 3}+x^{1 / 3}(x+h)^{1 / 3}+x^{2 / 3}\right)}\right]
\end{aligned}
$$

1.2)

$$
\begin{aligned}
f(x) & =\frac{4 x^{3}-5}{f^{\prime}(x)}
\end{aligned}=\lim _{h \rightarrow 0} \frac{4(x+h)^{3}-5-\left(4 x^{3}-5\right)}{h}
$$

2. จงหาอนุพันธ์ของฟังก์ชันต่อไปนี้ ณ จุดที่กำหนดให้ โดยใช้นิยามของอนุพันธ์ $f^{\prime}(a)=\lim _{x \rightarrow a} \frac{f(x)-f(a)}{x-a}$
2.1)

$$
\begin{aligned}
& f(x)=\left\{2 x^{3}+5\right. \\
& f^{\prime}(a)= \\
& =\lim _{h \rightarrow 0} \frac{2(x+h)^{3}+5-\left(2 x^{3}+5\right)}{h} \\
& = \\
& =\lim _{h \rightarrow 0} \frac{6 x^{2} h+6 x h^{2}+2 h^{3}}{h} \\
&
\end{aligned}=\lim _{h \rightarrow 0} \frac{h\left(6 x^{2}+6 x h+2 h^{2}\right)}{h}
$$

2.2) $f(x)=$

$$
\begin{aligned}
f^{\prime}(a) & =\lim _{h \rightarrow 0} \frac{\frac{5}{(x+h)^{2}}-\frac{5}{x^{2}}}{h} \\
& =\lim _{h \rightarrow 0} \frac{1}{h}\left(\frac{5 x^{2}-5(x+h)^{2}}{x^{2}(x+h)^{2}}\right)=\lim _{h \rightarrow 0} \frac{\left(-10 x h-5 h^{2}\right)}{h\left(x^{2}(x+h)^{2}\right)} \\
f^{\prime}(x) & =\lim _{h \rightarrow 0} \frac{h(-10 x-5 h)}{h \cdot x^{2}(x+h)^{2}}=-\frac{10}{x^{3}} \\
f^{\prime}(a) & =f^{\prime}(-1)=-\frac{10}{(-1)^{3}}=10
\end{aligned}
$$

3. จงหาอนุพันธ์ของฟังก์ชันต่อไปนี้ โดยใช้สูตร
3.1) $f(x)=x^{2}+5 x-1$

$$
f^{\prime}(x)=2 x+5
$$

3.3)

$$
\begin{aligned}
& f(x)=x^{7}+3 x^{5}+x-4 \\
& f^{\prime}(x)=7 x^{6}+15 x^{4}+1
\end{aligned}
$$

3.5)

$$
\begin{aligned}
f(x) & =\frac{1}{\sqrt{x}}-2 \sqrt{x}-5 x \\
f^{\prime}(x) & =\left(x^{-1 / 2}-2 x^{1 / 2}-5 x\right)^{\prime} \\
& =-\frac{1}{2} x^{-3 / 2}-x^{-1 / 2}-5 \\
f^{\prime}(x) & =-\frac{1}{\sqrt{x^{3}}}-\frac{1}{\sqrt{x}}-5
\end{aligned}
$$

3.7)

$$
\begin{aligned}
f(x) & =\left(3 x^{2}+5 x+5\right)(5 x-4) \\
f^{\prime}(x) & =\left(3 x^{2}+5 x+5\right) \cdot(5 x-4)^{\prime}+\left(3 x^{2}+5 x+5\right)^{\prime} \\
& =5\left(3 x^{2}+5 x+5\right)+(6 x+5)(5 x-4) \\
& =15 x^{2}+25 x+25+30 x^{2}+x-20 \\
f^{\prime}(x) & =45 x^{2}+26 x+5
\end{aligned}
$$

$$
(5 x-4)
$$

3.2) $f(x)=4 x^{3}-5$
$f^{\prime}(x)=12 x^{2}$
3.4) $f(x)=\frac{1}{5} x^{4}-\frac{1}{4} x^{3}+\frac{5}{3} x^{2}$
$f^{\prime}(x)=\frac{4}{5} x^{3}-\frac{3}{4} x^{2}+\frac{10}{3} x^{\prime}$
3.6) $f(x)=\frac{1}{x^{1 / 4}}+\frac{1}{x^{4 / 3}}+x^{4 / 3}+x^{1 / 4}$
$f^{\prime}(x)=\left(x^{-1 / 4}+x^{-4 / 3}+x^{4 / 3}+x^{1 / 4}\right)^{\prime}$

$$
=-\frac{1}{4} x^{-5 / 4}-\frac{4}{3} x^{-\frac{7}{3}}+\frac{4}{3} x^{1 / 3}+\frac{1}{4} x^{-3 / 4}
$$

$$
f^{\prime}(x)=-\frac{1}{4 x^{5 / 4}}-\frac{4}{3 x^{7 / 3}}+\frac{4}{3} x^{1 / 3}+\frac{1}{4 x^{3 / 4}}
$$

3.8) $f(x)=(\sqrt{x}-5)(x+1)$

$$
\begin{aligned}
f^{\prime}(x) & =(\sqrt{x}-5) \cdot(x+1)^{\prime}+(\sqrt{x}-5)^{\prime} \cdot(x+1) \\
& =1(\sqrt{x}-5)+\frac{1}{2 \sqrt{x}}(x+1) \\
f^{\prime}(x) & =\frac{3 x-10 \sqrt{x}+1}{2 \sqrt{x}}
\end{aligned}
$$

โรงเรียนพระวิสุทธิวงส์
มัธยมศึกษาปีที่ 6 [คณิต เพิ่มเติม]

$$
\text { 3.9) } \begin{aligned}
f(x) & =\frac{5+3 x}{x-2} \\
f^{\prime}(x) & =\frac{(5+3 x)^{\prime} \cdot(x-2)-(5+3 x) \cdot(x-2)^{\prime}}{(x-2)^{2}} \\
& =\frac{3(x-2)-1(5+3 x)}{(x-2)^{2}} \\
& =\frac{3 x-6-5-3 x}{(x-2)^{2}} \\
\therefore f^{\prime}(x) & =\frac{-11}{(x-2)^{2}}
\end{aligned}
$$

$$
f^{\prime}(x)=-2 x^{-3 / 2}-\frac{9}{2} x^{7 / 2}
$$

3.11)

$$
\begin{aligned}
& f(x)=\left(\frac{4}{x^{2}}+\frac{1}{x^{5}}\right)\left(2 x^{3}+5\right) \\
& f^{\prime}(x)=\left(\frac{4}{x^{2}}+\frac{1}{x^{5}}\right) \cdot\left(2 x^{3}+5\right)^{\prime}+\left(\frac{4}{x^{2}}+\frac{1}{x^{5}}\right)^{\prime} \cdot\left(2 x^{3}+5\right)
\end{aligned}
$$

$$
f^{\prime}(x)=8-\frac{44}{x^{3}}-\frac{25}{x^{6}}
$$

3.10) $f(x)=\frac{4-x^{5}}{\sqrt{x}}$

$$
\begin{aligned}
f^{\prime}(x) & =\left(4-x^{5}\right)\left(x^{-\frac{1}{2}}\right)^{\prime}+\left(4-x^{5}\right)^{\prime} \cdot\left(x^{-\frac{1}{2}}\right) \\
& =-\frac{1}{2} x^{-3 / 2}\left(4-x^{5}\right)+\left(-5 x^{4}\right) x^{-1 / 2} \\
& =-2 x^{-3 / 2}+\frac{1}{2} x^{7 / 2}-5 x^{7 / 2}
\end{aligned}
$$

$$
=6 x^{2}\left(\frac{4}{x^{2}}+\frac{1}{x^{5}}\right)+\left(-\frac{8}{x^{3}}-\frac{5}{x^{6}}\right) \cdot\left(2 x^{3}+5\right)
$$

$$
=24+\frac{6}{x^{3}}-16-\frac{50}{x^{3}}-\frac{25}{x^{6}}
$$

$$
\begin{aligned}
& \text { 3.12) } f(x)=\left(5 x+3 x^{4}\right) \cdot\left(\frac{x+3}{x-4}\right) \\
& f^{\prime}(x)=\left(5 x+3 x^{4}\right)\left(\frac{x+3}{x-4}\right)^{\prime}+\left(5 x+3 x^{4}\right)^{\prime} \cdot\left(\frac{x+3}{x-4}\right) \\
& =\frac{\left(5 x+3 x^{4}\right)(-7)}{(x-4)^{2}}+\frac{\left(5+12 x^{3}\right)(x+3)}{(x-4)} \\
& f^{\prime}(x)=\frac{12 x^{5}-33 x^{4}-144 x^{3}+5 x^{2}-40 x-60}{(x-4)^{2}}
\end{aligned}
$$

4. จงหาอนุพันธ์ของฟังก์ชันต่อไปนี้ ณ จุดที่กำหนดให้
4.1)

$$
\begin{aligned}
f(x) & =\frac{1}{\sqrt{x}}-2 \sqrt{x}-5 x \\
f^{\prime}(x) & =-\frac{1}{2} x^{-3 / 2}-x^{-1 / 2}-5 \\
& =-\frac{1}{2 x^{3 / 2}}-\frac{1}{\sqrt{x}}-5 \\
& \\
f^{\prime}(a) & =f^{\prime}(4)=-\frac{1}{2(4)^{3 / 2}}-\frac{1}{\sqrt{4}}-5 \\
& =-\frac{1}{16}-\frac{1}{2}-5=-\frac{89}{16}
\end{aligned}
$$

4.2)

$$
\begin{aligned}
& f(x)=x^{7}+3 x^{5}+x-4, a=2 \\
& f^{\prime}(x)=7 x^{6}+15 x^{4}+1
\end{aligned}
$$

$$
\begin{aligned}
f^{\prime}(a) & =f^{\prime}(2)=7(2)^{6}+15(2)^{4}+1 \\
& =689
\end{aligned}
$$

$$
N o 01=\left[\begin{array}{c}
.1=\left(\mathrm{f}(x)=x^{2}+5 x-1\right) \\
.2=\left(\mathrm{f}(x)=4 x^{3}-5\right) \\
.3=\left(\mathrm{f}(x)=\frac{5}{x}\right) \\
.4=\left(\mathrm{f}(x)=4 x^{(1 / 3)}\right)
\end{array}\right], \quad, N o 02=\left[\begin{array}{c}
.1=\left[\mathrm{f}(x)=2 x^{3}+5, a=5\right] \\
.2=\left[\mathrm{f}(x)=\frac{5}{x^{2}}, a=-1\right]
\end{array}\right]
$$

$$
\begin{aligned}
& N o 03=\left[\begin{array}{cc}
. l=\left(\mathrm{f}(x)=x^{2}+5 x-1\right) & .2=\left(\mathrm{f}(x)=4 x^{3}-5\right) \\
.3=\left(\mathrm{f}(x)=x^{7}+3 x^{5}+x-4\right) \\
.5=\left(\mathrm{f}(x)=\frac{1}{\sqrt{x}}-2 \sqrt{x}-5 x\right) \\
.7=\left(\mathrm{f}(x)=\left(3 x^{2}+5 x+5\right)(5 x-4)\right) & .4=\left(\mathrm{f}(x)=\frac{1}{5} x^{4}-\frac{1}{4} x^{3}+\frac{5}{3} x^{2}\right) \\
.9=\left(\mathrm{f}(x)=\frac{5+3 x}{x-2}\right) & .8=(\mathrm{f}(x)=(\sqrt{x}-5)(x+1)) \\
x^{(1 / 4)}+\frac{1}{x^{(4 / 3)}+x^{(4 / 3)}+x^{(1 / 4)}} \\
.11=\left(\mathrm{f}(x)=\left(\frac{4}{x^{2}}+\frac{1}{x^{5}}\right)\left(2 x^{3}+5\right)\right) \\
.10=\left(\mathrm{f}(x)=\frac{4-x^{5}}{\sqrt{x}}\right) \\
\end{array}\right], \\
& N o 04=\left[\begin{array}{l}
.1=\left[\mathrm{f}(x)=\frac{1}{\sqrt{x}}-2 \sqrt{x}-5 x, a=4\right] \\
.2=\left[\mathrm{f}(x)=x^{7}+3 x^{5}+x-4, a=2\right]
\end{array}\right]
\end{aligned}
$$

[^0]X Math@MUT XXX6300206-00002XX Diff02 Answers for No. 2

X [Page $=0002]$ XXX

[^0]: X [Page = 0002] XXX

